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BRIGANCE COMPREHENSIVE INVENTORY OF BASIC SKILLS-II 
 

Abstract 
 

by Daniel Hyde Breidenbach, Ph.D. 
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May 2009 
 
 
 

Chair: Brian F. French 
 
 
 The Brigance Comprehensive Inventory of Basic Skills-II is the newest version of 

a long-standing instrument that is presented as useful for identifying student achievement, 

identifying and monitoring strengths and weaknesses, obtaining data to support referrals 

for further diagnostic testing, and reporting progress for individual educational plans. 

Since the CIBS-II is intended to comply with requirements of the NCLB act, as well as 

the IDEA, validity studies are required. This study provides evidence to support the use 

of CIBS-II scores as indicators of students’ progress in various academic domains. This 

study is part of the overall standardization and validation project for the instrument.  

Nine subtests are included in the standardization and validation study of the 

CIBS-II. This study seeks confirming or disconfirming evidence as to the proposed 

composite score structure. The scores from the standardization sample are used to find 

evidence of essential unidimensionality of subtests through the use of DIMTEST and to 

investigate the composite score structure through the use of confirmatory factor analysis. 

DIMTEST results indicate that five subtests cannot be considered unidimensional. 

Several CFA models were fit to the standardization data, including the proposed 
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composite score model and multiple plausible rival models. The sample was randomly 

split in half to allow one subgroup to be used to test models while holding the second 

subgroup in reserve to cross-validate the best-fitting model. The best-fitting model was in 

accordance with the proposed composite score structure. This model was cross-validated 

with the second random subgroup to ensure that the final model was not replicating 

specific features of the sample and to support the conclusion that the selected model fits 

the entire sample. 

Results provide support for the proposed composite score structure, but the 

support is tempered by evidence of multidimensionality in five subtests and by high 

interfactor correlations and structure coefficients, which are consistent with evidence of 

multidimensionality. Suggestions are made regarding additional studies to resolve these 

concerns. 
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CHAPTER ONE 

INTRODUCTION 

 

Education reform can be viewed as a never-ending process. Metaphors such as 

“cycle,” “pendulum swings,” and “bandwagon” are common in descriptions of this 

process. As a result of growing concerns over educational progress in the United States 

(e.g., National Center for Education Statistics (NCES), 2000; NCES, 2008; National  

Commission of Excellence in Education (NCEE), 1983) and of international comparison 

studies (e.g., TIMSS; Mullis, Martin, Gonzalez, & Chrostowski, 2004), education has 

entered what has been referred to as “the accountability era” (Dwyer, 2005).  

Public and political dissatisfaction with teaching and learning (Hart & Teeter, 

2002) eventually led to the No Child Left Behind Act (NCLB, 2002). More than half of 

parents of school age children (52%) think that the U.S. education system needs “major 

changes or a complete overhaul” (Hart & Teeter, 2002, p. 2). The primary goal of 

education reform in the latter half of the 20th Century and the early years of the 21st 

Century has been to improve the level of achievement for all students in general and to 

reduce the achievement gap, that is, reduce racial, gender, and socioeconomic inequality 

in educational attainment (e.g., Croom, 1997; Hiebert, et al., 1997; Porter, 2005). 

 The sense of “accountability” in this era is applied at multiple levels: states, 

school districts, specific schools, and teachers, individually and severally, are 

increasingly held accountable (i.e., responsible) for students’ educational progress. Under 

NCLB, states and school districts can lose funding and local control if their students fail 

to make adequate educational progress. Districts hold schools accountable through 



 

2 

pressure on administrators, pressure that is passed on to teachers, again through the threat 

of losing funding or control. NCLB requires that if a school fails to meet state-mandated 

performance for five years in a row, the school must be “reconstituted,” which can mean 

replacement of teachers and administrators or reorganization of the school as a charter 

school (Howell, West, & Peterson, 2007).  

Measuring educational attainment is a complex undertaking. NCLB has created 

the criterion of adequate yearly progress (AYP), which is intended to track whether 

teachers are helping all students improve (NCLB, 2002). This criterion has been 

criticized because it places unequal demands on high-achieving schools versus 

traditionally underserved schools (Peterson, 2007). Students who have very low initial 

achievement may fail to make AYP even though they show substantial achievement gain 

(Linn, 2005). Under NCLB, states created their own educational standards and their own 

criteria for achieving the “Proficient” level. Consequently, different states have different 

definitions for AYP (Lewis, 2005), and even within a state, schools cannot be 

meaningfully compared based on AYP (Linn). The variable that is used to hold districts, 

schools, and teachers accountable is test scores—specifically, standardized achievement 

test scores (Berry & Howell, 2008). However, overreliance on achievement tests in 

accountability systems can “produce perverse incentives and seriously inflated estimates 

of gains in student performance” (Koretz, 2002, p. 753). 

Accountability and Validity 

 Achievement test scores are used for multiple purposes, including purposes 

declaimed as inappropriate: for example assessing teachers’ effectiveness (Joshua, 

Joshua, & Kritsonis, 2006) or influencing the sale of homes (Kohn, 2000). Such uses fail 
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to take into account modern notions of test score validity, which stress that test scores 

should only be considered valid for making inferences about the originally intended use 

of the scores. Validation studies for achievement tests typically address the suitability of 

the tests for making inferences about particular strengths and weaknesses of individual 

students or the relative standing of students compared to others. The studies do not 

typically evaluate the tests’ suitability for making comparisons between students or entire 

schools (American Psychological Association, 2001). 

 In light of the increased push for accountability and the associated increase in 

public scrutiny of test scores, it is crucial that achievement tests meet the highest 

standards in all aspects of the testing process (e.g., Standards for Educational and 

Psychological Testing, AERA, APA, & NCME, 1999). In particular, well conceived and 

properly reported validity studies not only provide evidence that test scores are 

meaningful, but they also inform test users of the intended uses of the scores, which is a 

necessary, though not a sufficient condition, for proper use of the scores. 

 The present-day accountability movement can trace its roots to the 1983 report A 

Nation at Risk (NCEE, 1983), which questioned the quality of the U.S. educational 

system and served as a call for reform, including steps to track the results of the reform. 

The NCLB Act of 2001 has its roots in various federal efforts to encourage states to 

implement measures to improve their educational outcomes. For example, in 1994 the 

Improving America’s School Act (IASA) was signed into law. The act required states to 

create and implement educational standards and an assessment system to monitor 

progress toward those standards (Walberg, 2003). The act thus set into motion a process 

that could ultimately lead to a different achievement testing system in each state. 
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However, by the targeted date of 2000, few states had an assessment system specified, 

much less implemented (Cohen, 2002).  

 The NCLB act (2002) spelled out some of the same goals as the 1994 IASA; 

however, NCLB’s accountability provisions were much more clearly specified, with 

consequences spelled out in the law for states that failed to achieve the provisions of the 

law by specific target dates. Although an elaborate review and approval process was 

implemented to vet the states’ accountability plans, states were given wide leeway in 

devising their assessment systems (Erpenbach, Forte-Fast, & Potts, 2003). For example, 

states could report norm-referenced or criterion-referenced scores, although in the case of 

norm-referenced scores, states were required to set a state-level definition of proficiency. 

For example, Iowa selected the Iowa Test of Basic Skills as its assessment instrument. 

Proficiency on this norm-referenced instrument was defined as scoring at the 41st 

percentile or higher, (2002 National norms—spring standardization study) (Erpenbach et 

al., 2003). 

 In addition to the many state achievement assessments that have been developed, 

many achievement tests are published commercially for diagnostic use, low-stakes 

monitoring of student performance, screening of students with learning difficulties, etc. 

(Koretz & Hamilton, 2006). In the 2005 and 2007 Buros Mental Measurement 

Yearbooks, 65 commercially available achievement tests were reviewed (Spies & Plake, 

2005; Geisinger, Spies, Carlson, & Plake, 2007). The combined classification index, 

which classifies all tests reviewed since the ninth edition of the yearbook (i.e., since 

1985), lists 109 achievement tests (Buros Institute of Mental Measurements, n.d.). 

Students and teachers are surrounded by achievement tests, and it is incumbent on test 
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publishers to provide evidence that test scores are useful for the publishers’ intended 

interpretations. In addition, it is incumbent on test users to judge whether a given test will 

produce scores that are useful for the user’s intended interpretation (Messick, 1989). It is 

noteworthy that the test user can only fulfill the user’s responsibility if the producer has 

fulfilled the producer’s responsibility.   

 In this environment of accountability, important decisions are made on the basis 

of achievement test scores. Test score validity refers to the degree to which these 

decisions, and the inferences on which the decisions are based, are justified by supporting 

evidence (Linn, 2005). Various forms of supporting evidence can exist, including 

evidence based on: (a) test content, (b) response processes, (c) internal structure, (d) 

relations to other variables, and (e) consequences of testing (AERA et al., 1999). In the 

past, sources of evidence were referred to as different types of validity, including content 

validity: the extent to which the instrument’s items represent the domain of interest; 

predictive validity: the extent to which the instrument predicts performance on 

measurements (e.g., achievement) in the future; concurrent validity: the relationship 

between the instrument’s scores and scores on other measurements given at the same 

time; and construct validity: the extent to which the instrument’s scores allow meaningful 

inferences about some psychological construct (Crocker & Algina, 1986). Modern 

notions of validity favor a more unified view as opposed to multiple kinds of validity and 

treat validation as an ongoing process rather than a one-time study (see chapter 2); 

nevertheless, it is difficult to overstate the importance of carefully evaluating the validity 

of test scores, and new assessment instruments are, and should be, scrutinized for 

evidence to support the uses of scores for their intended purpose. 
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CIBS-II 

 The Comprehensive Inventory of Basic Skills-II (CIBS-II, Brigance 2009) is an 

example of a new achievement test, and its scores are intended to be used for multiple 

purposes. The CIBS-II is presented as an instrument useful for identifying students’ level 

of performance, identifying and monitoring strengths and weaknesses, obtaining data to 

support referrals for further diagnostic testing, and monitoring and reporting student 

progress for individual educational plans (IEPs). Such uses of achievement test scores 

should be supported by evidence of the suitability of scores for those purposes. Since the 

CIBS-II is intended to comply with requirements of the NCLB act, as well as the 

Individuals with Disabilities Education Act (IDEA, 2004), validity studies are required. 

The present study is intended to provide some of the evidence needed to support the use 

of CIBS-II scores as indicators of students’ progress in various academic domains. This 

study is part of the overall standardization and validation project for the instrument.  

The CIBS-II is designed to be easily administered by school-psychologists, 

diagnosticians, or classroom teachers. Portions of the CIBS-II yield scores that can be 

interpreted as either criterion- or norm-referenced scores. As a criterion-referenced 

measure, the CIBS-II is designed to: (a) measure mastery of developmental and academic 

skills; (b) identify areas of strength and weaknesses; (c) serve as an indicator of student 

progress; and (d) assist in identifying goals and objectives for individual plans. As a 

norm-referenced measure, the CIBS-II is designed to: (a) meet state and federal 

assessment requirements for the identification of exceptional students for placement 

within special education services; (b) assess five areas of academic achievement (see 

below); (c) assess information processing skills in reading, math and written language 
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designated under the IDEA for the assessment of learning disabilities (IDEA, 2004); and 

(d) rapidly and briefly screen students to determine whether additional testing is needed.  

Among the many subtests designed for 1st through 6th grade students, nine are 

included in the national standardization and validation study of the CIBS-II. (A separate 

instrument, the “Readiness Form,” exists for kindergarten age students.) These subtests 

are designed to cluster into the following composites: Basic Reading skills (e.g., sight 

word vocabulary, phonetic analysis and phonemic awareness, survival sight words); 

Reading Comprehension, (e.g., reading vocabulary and passage comprehension); 

Mathematics (e.g., computation and math reasoning skills); Written Language (e.g., 

spelling and sentence writing); and Listening Comprehension (vocabulary and word-

understanding separate from reading).  

By presenting a composite score structure for the nine subtests in the standardized 

portion of the CIBS-II, the instrument’s author has posited a latent structure for the 

instrument. Although the author and publisher have not presented any substantive or 

statistical explanation for the composite score structure, the nature of the score structure 

suggests that rather than measuring nine individual constructs or one general achievement 

construct, the nine subtests measure five broad constructs. In keeping with Standards 1.11 

and 1.12 of the Standards for Educational and Psychological Testing, evidence 

supporting the composite score structure of the CIBS-II should be provided (AERA et al., 

1999). This study is intended to seek confirming or disconfirming evidence as to the 

proposed composite score structure. The scores from the national standardization sample 

will be used to find evidence of essential unidimensionality (Stout, 2006) of subtests and 
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to investigate the composite score structure through the use of confirmatory factor 

analyses. 

The next chapter will explore the history of achievement testing in the United 

States and the development of the modern unitary view of validity. Sources of evidence 

related to the internal structure of tests will be presented and briefly explained. The 

history of the CIBS-II will be presented, including a review of validity studies for 

previous versions of the CIBS. This background investigation will further establish the 

need for, and importance of, the present study.  

Research Question 

 The overarching question in the present study is: To what extent do scores from 

the standardization sample of the CIBS-II support the composite score structure 

suggested by the publisher? Thus the study focuses on the internal structure of CIBS-II 

scores. The study will use the confirmatory factor analysis framework, and it will include 

an investigation of the dimensionality of subtest scores, which also addresses the internal 

structure of the scores. 
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CHAPTER TWO 

REVIEW OF LITERATURE 

 

The purposes of this chapter are to review the development of achievement testing 

in the United States, to summarize the history of validation studies in general, to provide 

an overview of the particular statistical tools to be used in this study, and to argue for the 

importance of the present study. 

Achievement Testing 

Early Years 

The first group-administered achievement testing in the United States was 

implemented in the 1840s as an effort to monitor schools’ effectiveness in Boston, 

Massachusetts. These test scores were intended to allow for comparison among schools 

and classrooms. In subsequent decades, such tests usually took the form of high school 

entrance examinations (Resnick, 1982), and the intended use of their scores changed from 

comparison of schools to identifying the most able students for placement in high school.  

Even though these tests were not administered to representative groups of students, they 

were used to compare schools on the basis of student achievement, which shows not only 

a long history of achievement testing but also a long history of questionable uses of test 

scores (Koretz & Hamilton, 2006). 

World War I caused the next major wave of changes in standardized testing in the 

United States. The entry of the United States into the war created a massive increase in 

the size of the armed forces. The forces required an efficient way to classify recruits as 

being officer candidates versus infantrymen. Group tests were employed to measure the 
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intellectual abilities of recruits. This need to test ability ushered in the expansion of 

intelligence testing as schools began to use such tests to place students in homogenous 

ability groups (Koretz & Hamilton, 2006; Resnick, 1982). The first large scale tests 

designed as achievement measures appeared around the same time. The Stanford 

Achievement Tests were published in 1923 and the Iowa Tests of Basic Skills were 

developed in the 1930s. Both of these were expressly intended to measure student 

learning (i.e., achievement) over a broad range of content areas (Koretz & Hamilton, 

2006). These early achievement measures were intended to help diagnose student 

academic needs so that teachers could adapt their instruction for their students (Resnick, 

1982). 

Origins of the Accountability Movement 

Throughout these early years, and continuing into the 1950s, large-scale 

achievement testing was used mainly for student diagnostic and placement purposes and 

to monitor the academic performance of students in local jurisdictions, with little 

attention from the state or federal government (Koretz & Hamilton, 2006). However, the 

Soviet Union’s launching of the Sputnik satellite in 1957 touched off a strong feeling of 

discontent with the United States school system (Popham, 1978). Among efforts to 

improve education, particularly in science and mathematics, Title I of the Elementary and 

Secondary Education Act of 1965 required measures to evaluate the law’s effects. This 

provision led to the development of the National Assessment of Educational Progress 

(NAEP; NCES, 2000) and marked the first use of standardized assessments to monitor 

students’ academic progress nation-wide (Koretz & Hamilton, 2006). 
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NAEP was initiated in 1965 as a program to assess the achievement of students in 

fourth, eighth, and twelfth grades. Initially, only selected item scores were reported, as 

opposed to test scores, and individual student scores have never been reported. By the 

late 1990s, NAEP had become more influential, with test scores reported at the state level 

and with federal education funding tied to state-level performance (Brennan, 2006). 

Criterion Referenced Scoring 

Minimum-competency testing was developed in the 1970s as the first large-scale 

example of holding students and teachers accountable for student performance (Popham, 

1978). Minimum-competency testing, as implied by the name, was designed to measure 

whether students had reached a predefined level of competence (i.e., achievement). This 

shift in measurement led to the development of criterion-referenced measurement. Robert 

Glaser is credited with first contrasting norm-referenced versus criterion-referenced 

measurement in 1963 (Popham, 1978). In norm-referenced measurement, scores are used 

to determine examinees’ standing relative to a standardization group, which is intended to 

be representative of the population of examinees. With criterion-referenced measurement, 

scores are used to evaluate an examinee’s absolute level of attainment of criterion 

objectives. 

Criterion-referenced measurement scores are most often used in one of two ways: 

(1) to determine what students know so that instruction can be tailored to their individual 

strengths and weaknesses and (2) to determine which students have attained mastery 

(e.g., for advancement or graduation) by comparing the students’ scores to a 

predetermined cut-score. The first purpose led to the concept of measurement-driven 

instruction by using the test scores to shape instructional decisions (Popham, 1987). The 
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second purpose survives to this day in, for example, the standards-based reporting of 

NCLB (Koretz & Hamilton, 2006). 

Accountability Revisited 

 The use of test scores to shape instruction, along with the continued prevalence of 

NAEP, led to increased attention to test scores, which contributed to widespread public 

dissatisfaction with the academic performance of United States students. The education-

reform movement that swept the United States in the mid-80s eventually led to several 

states’ enactment of standards-based test score reporting systems. Financial incentives 

(and sanctions) were put before schools and districts based on their scoring on state-

mandated achievement tests. At the same time, several states began explicitly linking 

promotion between grades to exceeding a cut-score on the state achievement test. 

Associated with these developments was a shift away from minimum competency toward 

high expectations (Koretz & Hamilton, 2006). 

Present Situation 

In addition to a sharp increase in the amount of achievement testing that occurred 

in the 1990s and early 2000s, the characteristics and usages of the tests have changed as 

well. NCLB has played a large role in driving many of these changes. For example, under 

NCLB, fewer students are exempt from yearly achievement testing, students’ scores are 

reported relative to targeted scoring levels (e.g., reaching or surpassing the “Proficient” 

standard), and a complex measure called Adequate Yearly Progress has been introduced 

to track performance of schools (Koretz & Hamilton, 2006).  

NCLB instituted many requirements for state achievement testing. Within the 

defined regulations room exists for wide diversity. States were at liberty to define their 



 

13 

own academic standards and to design their own testing system. However, all NCLB 

testing revolved around comparing students’ scores to standard performance levels of 

Basic, Proficient, and Advanced. Although every state is required to use, at a minimum, 

these three performance levels, each state defines its own criteria for the standards, which 

results in wide differences in the meaning of performance levels across states. Most states 

use a criterion-referenced type approach in which a standard-setting study (Cizek & 

Bunch, 2007) is used to set cut-scores for each labeled proficiency level. Other states set 

their standards based on norm-referenced scores: the cut score for a level is based on 

achieving a certain percentile score relative to a specified standardization of the test.  

Outside the realm of mandated state-level achievement testing, several other types 

of commercially produced achievement tests continue to enjoy wide use, including 

content area surveys, academic area achievement and diagnostic assessments, and special 

education diagnostic assessments (Ferrara & DeMauro, 2006). The most widely used 

content area surveys generally are used to describe a student’s performance across a wide 

range of content areas, such as mathematics, reading skills, reading comprehension, 

writing skills, social studies, etc. Score reporting is typically norm referenced and based 

on nationally representative samples. Some such assessments also include performance 

level information in tandem with percentile scores. 

Academic area achievement and diagnostic assessments are less closely aligned 

with specific grade-level academic content and instead assess students’ achievement in 

rather broad academic areas (e.g., computation, written expression) and are specifically 

intended to report individual students’ strengths and weaknesses. Such assessments are 
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usually selected by individual school districts or schools and are not intended for group 

reporting of scores. 

Similarly, special education diagnostic assessments are intended to identify 

special education students and track the progress of these students. These diagnostic 

assessments are used to determine the existence of disabilities in students, to plan 

educational services and prepare instruction, and to provide ongoing evaluation of their 

progress in schools. Special education students’ individualized education plans (IEPs) are 

sometimes specified in relation to progress on these diagnostic assessments.  

Validity and Validation 

The term validity as applied to tests and test scores has varied widely since its 

introduction into educational testing in the early part of the 20th Century, and its meaning 

is still studied, argued, and often misunderstood to the present day (Cizek, Rosenberg, & 

Koons, 2008; Hogan & Agnello, 2004). The most general sense of the validity of test 

scores is to ask: “What is the meaning of these test scores?” Often, especially early in the 

development of validity theory, this question was posed as: “Does this test measure what 

it is purported to measure?” For adherents to modern validity theory, the question 

typically becomes: “Is the intended interpretation of these test scores defensible?” or 

“Does empirical evidence and theoretical rationale support the intended inferences that 

are to be drawn based on these test scores?” 

Conceptions of validity and validation have evolved tremendously over the years 

from the 1920s to the present. Messick (1989) presents a thorough account of the many 

transitions that validity theorists passed through in the transition from the focus on 

distinct types of validity to the current unitary validity concept. The following summary 
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is intended to highlight the types of validity evidence that have been the main focus of 

theorists through the years. 

Criterion Validity and Content Validity 

The earliest attention to the validity of test scores was in the form of criterion 

validity studies of achievement tests developed in the 1920s. Criterion validity became 

the predominant manner in which validity was defined through the 1930s and 1940s 

(Kane, 2006). The criterion model of validity has two versions: predictive validity and 

concurrent validity. Predictive validity referred to the extent to which the instrument 

predicted performance on measurements (e.g., achievement) in the future, while 

concurrent validity indicated the relationship between the instrument’s scores and scores 

on other measurements given at the same time (Crocker & Algina, 1986). For early 

validity theorists, the goal of measurement was to estimate as accurately as possible the 

value of some criterion variable, so validity specifically referred to the relationship 

between test scores and criterion scores (Kane, 2006). Criterion-related validity is 

established in terms of correlations between test scores and criterion scores or by 

regressing criterion scores on test scores. However, a validity argument based on 

students’ scores on a criterion measure is only as strong as the validity argument for the 

criterion measure, and although criterion validity appears to be objective and purely 

quantitative, it depends on the subjective value judgment of what criterion to specify 

(Kane, 2006). 

The model of content validity also developed in these years as a means of 

validating the criterion measures. The content model of validity uses the idea of domain 

sampling: test scores represent a sample of performance in the domain of interest. A 
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content valid test should elicit a broad and representative sample of the examinee’s 

performance in the domain. This representative sample is used to estimate the examinee’s 

overall level of skill or achievement in that area (Kane, 2006). Content validity is 

established solely on the basis of expert judgment about the content of the test and does 

not take into account actual responses. These judgments do not provide any support for 

inferences to be made from test scores; such interpretations of the meaning of test scores 

lack any justification (Messick, 1989).  

Construct Validity 

By the 1950s, criterion-related validity was broadly accepted, as was content 

validity to help justify the use of the criterion measures (Kane, 2006). Construct validity 

emerged as a third type of validity in the mid-1950s. Rather than supplant other views of 

validity, construct validity came to sit alongside them (Messick, 1989). Construct validity 

indicated the extent to which the instrument’s scores allowed meaningful inferences 

about some psychological construct (Crocker & Algina, 1986). Construct validity 

originated out of personality testing, where no obvious criterion existed. In this model of 

validity, the test developer begins with a theory about the existence of a construct, rather 

than a criterion, and uses that theory to devise measures. Validation of a test under this 

model “is based on an integration of any evidence that bears on the interpretation or 

meaning of the test scores” (Messick, 1989, p. 17). 

The Unified Model of Validity 

Although the construct model of validity began as an alternative model when no 

suitable criterion was available, it was soon recognized as the fundamental idea of 

validity. Loevinger (1957, as cited in Kane, 2006) is credited as the first psychometrician 
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to put forth the idea of what would become the unified model of validity when she stated 

that the criterion and content models were means to get at the goal of construct validity. 

Through the 1960s and 1970s, validity continued to be widely viewed as a set of methods 

to choose among depending on the nature of the test. At the same time, validity theorists 

continued to develop and argue for a unified approach, in which different “types of 

validity” are viewed as types of evidence of construct validity. By the early 1980s, the 

unified point of view was gaining greater acceptance. With Messick’s 1989 chapter on 

validity in the third edition of Educational Measurement, the construct validity model 

was authoritatively put forth as the unifying concept of all test validation. 

From 1989 to the present, this unified approach to validity has been promulgated 

and extended but rarely contradicted (cf., Borsboom, Mellenbergh, & van Heerden, 2004; 

Lissetz & Samuelsen, 2007). Messick’s (1989) definition of validity as “an integrated 

evaluative judgment of the degree to which empirical evidence and theoretical rationales 

support the adequacy and appropriateness of inferences and actions based on test scores 

or other modes of assessment” (p. 13; emphasis in original) stresses that validity applies 

to inferences, not to tests or even test scores; that validity is a judgment; and that validity 

arguments rely on multiple sources of evidence. Although modern validity theorists 

nearly unanimously accept the unified approach to validity, practitioners of testing have 

“implicitly rejected” important aspects modern validity theory by continuing to present 

validity studies more in keeping with the view that validity is a property of the test and 

that different kinds of validity can be used to support the validity of a test (Cizek et al., 

2008, p. 409). 
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Modern validity theory emphasizes test validation rather than test validity. The 

generally accepted view is that one validates interpretations or uses of tests. Validation is 

a process; it is “the development of evidence to support the proposed interpretations and 

uses,” that is, “to show that [the proposed interpretation or use] is justified” (Kane, 2006, 

p. 17). The Standards for Educational and Psychological Testing (AERA et al., 1999) 

propose five sources of validity evidence, including evidence based on: (a) test content, 

(b) response processes, (c) internal structure, (d) relations to other variables, and (e) 

consequences of testing. The authors of the Standards stress that while the different 

sources highlight different aspects of test validity, they do not represent different types of 

validity. The kind of evidence collected should depend on the proposed interpretation. 

For example, if scores on a subtest are interpreted as a unidimensional measure of 

arithmetic achievement, validation should include collecting evidence as to the internal 

structure (i.e., the dimensionality) of the subtest as well as evidence that the content of 

the subtest is representative of the arithmetic content the examinees have had an 

opportunity to learn. 

Evidence of the internal structure of the test is especially relevant for a collection 

of items (or subtests) that is purported to allow measurement of a few broad constructs. 

For example, a battery of achievement tests may include ten or more subtests yet report 

scores on such broad constructs as reading achievement, mathematics achievement, and 

science achievement. In such cases, composite scores are often reported, meaning that 

some combination of subtest scores are used to produce a composite score for a broad 

content area (i.e., construct). The broad composites can be interpreted as latent variables 

or factors, that is, they can be conceived of as unobservable abilities or traits that can 
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only be measured indirectly by means of observable indicators (the subtest scores) 

(Thompson, 2004). When a particular latent structure is proposed for a set of scores, that 

structure is one interpretation of the scores and should be subject to validation. Evidence 

to support (or refute) such a structure can be collected via factor analysis, which is 

described below.  

Data Analysis to Support Validation 

Confirmatory Factor Analysis 

The factor structure of an instrument can be examined with confirmatory factor 

analysis (CFA), a theory-driven analysis requiring specification of the relationship of 

indicators to underlying traits. In the context of validation studies, CFA can be used to 

assist in understanding the internal structure of a test and to provide evidence in support 

of a proposed interpretation of the score structure. Rival hypotheses (i.e., alternative 

models) can be tested within the CFA framework, which can lead to stronger evidence of 

validity (Thompson & Daniel, 1996). By testing rival models one can investigate 

alternative interpretations of test scores. If a posited model is found to be a more 

plausible interpretation than rival models, then that model gains credence (Kane, 2006). 

 A history of the association between validity studies and factor analysis has been 

reported in some detail (e.g., Thompson, 1997; Thompson, 2004; Thompson & Daniel, 

1996). Factor analysis is intended to model the relationship between latent constructs, or 

factors, and observed variables, or indicators. Latent constructs are unobserved and thus 

cannot be measured directly. But observed variables are influenced by the latent 

constructs, and thus indicate something about the number and nature of the latent 

constructs (Brown, 2006). More specifically, factor analysis techniques allow researchers 
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to analyze the covariance between indicators and separate out common variance, that part 

of the variance that is influenced by a common factor (or factors), versus unique variance. 

 In a CFA study, the researcher posits a theory-based model and investigates how 

well the data fit that model. The fit of data to the model can support, disconfirm, or 

suggest changes in a theory. Although exploratory factor analysis (EFA) and CFA both 

are concerned with how observed variables are linked to latent variables, EFA takes an 

exploratory approach to generate possible models when the links are unknown. CFA, 

however, is appropriate when a theoretical model is suggested a priori (Byrne, 1998).  

 It is possible to use CFA in an exploratory manner by respecifying models 

without regard to underlying theory; however, such an approach can lead to capitalization 

on chance (Keith, 2005). Rather than attempting to interpret a structure implied by the 

data, CFA is intended to test the fit of data to a structure that follows from theoretical 

considerations. CFA requires that constructs are defined before testing a model (Graham, 

Guthrie, & Thompson, 2003). Whereas exploratory methods (e.g., EFA) use the data to 

create a model, CFA requires the researcher to explicitly define how indicators are 

hypothetically linked to underlying constructs. These hypothetical links can then be 

supported or disconfirmed—partly in an absolute sense (i.e., does the model fit?) and, 

even more so, in a relative sense (i.e., does the model fit better than other defensible 

models?). 

 Analysis of the fit of a model can lead a researcher to consider alternative 

interpretations of the scores. Such investigations can be a valuable part of developing an 

understanding of an instrument’s structure. However, interpretations derived from such 
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an analysis should be validated by fitting an independent sample of test scores to the new 

proposed model (MacCallum, 1995). 

How CFA Works 

 The CFA model relates observed (x) variables to latent constructs (ξ) using a 

linear model: 

 x = Λξ +δ . (1) 

In this equation, x is the vector of observed variables, Λ is the matrix of factor loadings, 

(or, more precisely, factor pattern coefficients), ξ is the vector of factors, and δ is the 

vector of error terms for the indicator scores (or, more precisely, unique components). 

Estimation of parameters in the CFA model is implemented using the covariance 

structure of the data. That is, the covariance matrix of the observed variables, Σ, is 

modeled as 

 ′= +Σ ΛΦΛ ΘΣ ΛΦΛ ΘΣ ΛΦΛ ΘΣ ΛΦΛ Θ , (2) 

where ΦΦΦΦ is the matrix of factor variances and covariances and ΘΘΘΘ is the matrix of indicator 

error variance and covariance. 

 The CFA model also can be represented graphically as shown in Figure 1. In such 

representations, referred to as path diagrams, latent constructs are represented with 

ellipses or circles, and observed variables are represented with rectangles or squares. An 

arrow leading from a latent construct to an observed variable indicates that the construct 

is presumed to influence the variable. Latent constructs are unobserved and cannot 

directly be measured, so the observed variables are often referred to as indicators, to 

convey the notion that it is through the observed variables that we indirectly measure the 
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latent construct. Double headed arrows between two features in the diagram indicate that 

the covariance between those terms is estimated as part of the model. 

 

 

Figure 1. A simple path diagram for a two-factor model. 

  

 Usually, error terms are assumed to be independent, since common variance 

between variables is reflected in the latent construct. However, if two variables share 

variance that is not reflected in the model (i.e., that is not presumed to be reflected in the 

latent construct), then including the covariance of the error terms for those variables may 

improve the fit of the model (Kline, 2005). 

 Most CFA models assume simple structure, in which each indicator is associated 

with exactly one factor. Having a link between an observed variable and more than one 

factor is referred to as a cross-loading. Although most CFA models are used to test 

theories in which a model is specified to have simple structure, it is often misleading to 

regard that simple structure as removing all relationship between indicators and the 
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factors to which they are not linked. Some of the common variation between indicators of 

differing factors is captured in the covariance between factors (Brown, 2006), and factor 

structure coefficients should be calculated to measure the correlation of the indicators 

with the factors (Thompson, 1997). When factors are not correlated, structure coefficients 

are simply the pattern coefficients, but when factors are correlated, the structure 

coefficients reveal the association between factors and the indicators to which they are 

not linked. Analysis of structure coefficients in addition to the pattern coefficients (Λ) 

can also be illuminating in examining relationships (Graham et al., 2003). 

 When data are fit to a properly specified model and parameters are estimated 

(estimation methods will be discussed in the Methods section), the output includes 

parameter estimates and standard errors, which can be used to derive a t-value to test 

whether a parameter is significantly different from zero, as well as model-fit statistics, 

which are used to judge how well the model fits the data. Good fit lends support to the 

theory that led to the model. However, as discussed earlier, models are best judged by 

comparison with theoretically defensible competing models (Thompson, 2004). 

The estimated loadings can be interpreted as the strength of association between a 

factor and an indicator. High loadings of a set of indicators on a factor provide evidence 

that the indicators are associated with the factor. In addition, a collection of fit indices is 

produced when a model is estimated. Fit indices are produced by comparing the 

covariance matrix of the data to the covariance matrix implied by the specified model. 

Good fit of the data to the model is further evidence that the proposed model is a 

plausible interpretation of the test scores (Kline, 2005). Model fit statistics will be 

discussed in the Methods section. 



 

24 

 Higher-order factor analysis can be used to account for correlations among first-

order factors and should be investigated under such correlated solutions (Thompson, 

2004). If latent constructs are strongly correlated, then perhaps a second-order factor can 

be specified as a common influence on the latent constructs (Brown, 2006). As with all 

model specification, such relationships between constructs should be theory based, as 

opposed to purely data-driven. 

 Higher-order factor analysis in the LISREL notational scheme (Jöreskog & 

Sörbom, 1996) requires that the model be written in terms of y-variables. The observed 

indicators (Y) are influenced by the first-order factors (η) as reflected in the equation: 

 =Y Λη+ ε . (3) 

But the first-order factors (η) are influenced by second-order factors (ξ) as reflected in the 

equation: 

 η = Γξ + ζ , (4) 

where Γ is the matrix of second-order factor loadings and ζζζζ is the vector of “error” in η. 

This “error” vector is more properly conceived of as unique variance in the first-order 

factors. Higher-order factor analysis is common in intelligence testing, with a second-

order g, or “general intelligence,” factor that is influenced by multiple first-order factors 

(e.g., Keith, Fine, Taub, Reynolds, & Kranzler, 2006). 

Dimensionality and DIMTEST 

A test that is designed to measure exactly one trait or ability is said to be 

unidimensional. The dimensionality of a test is closely related to its internal structure: a 

test designed to allow inferences about a certain number of traits or abilities should 

measure the same number of dimensions. If a proposed interpretation of scores involves 
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assumptions about the dimensional structure of the scores, then the assessment of the test 

scores’ dimensional structure is an important part of the validation of that interpretation. 

Confirming the unidimensionality of test scores is important in validation efforts for at 

least three reasons: (a) to assess whether the measurement of a trait is being contaminated 

by the measurement of a second trait, (b) to help determine whether a test is measuring 

multiple traits and should be divided into separate subtests for interpretation, and (c) to 

evaluate the suitability of the scores for analysis that rely on the assumption of 

unidimensional scores (e.g., CFA) (Stout, 1987). 

 DIMTEST is a nonparametric procedure to test the hypothesis that a test is 

essentially unidimensional. The concept of essential unidimensionality recognizes that it 

is exceedingly rare for a test to truly measure one and only one dimension, but that it is 

possible for only one dimension to be seen as important or interpretable (Nandakumar, 

1991). DIMTEST works by examining two partitions of the test items: AT, the 

assessment subtest, and PT, the partitioning subtest. The AT includes items that are 

known, or hypothesized, to be dimensionally distinct from the items in PT. The 

DIMTEST procedure then calculates a statistic to test the null hypothesis that the AT set 

is dimensionally similar to PT versus the alternative hypothesis that the subtests are 

dimensionally distinct (Stout, 2006). Because the DIMTEST statistic is known to be 

statistically biased (Stout, 1987), a nonparametric IRT bootstrap based bias correction for 

the DIMTEST statistic has been incorporated into the DIMTEST procedure (Froelich & 

Stout, 2003). The corrected DIMTEST statistic has a standard normal distribution, and a 

statistically significant result is evidence that the test is not essentially unidimensional 
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(Stout, 2006). The DIMTEST procedure is implemented as a component of the 

DIMPACK nonparametric dimensionality analysis software package (Stout, 2006). 

 The DIMTEST procedure rests on the notion that the covariance of pairs of items, 

conditioned on estimated examinee ability, should be small when a test is essentially 

unidimensional. To calculate the DIMTEST statistic, the PT is used to estimate the 

examinee ability vector for the test scores. The conditional covariance for each pair of 

items in AT is calculated, conditioning on PT subtest score, and these covariances are 

combined in the DIMTEST statistic, first presented by Stout (1987) and summarized as 

follows by Finch and Habing (2007): 

 * ˆ ˆCov( , |θ ) θ
∞

< ∈ −∞

= ∑ ∫ i l PT PT
i l AT

T U U d . (5) 

Finally, the positive bias in *T is corrected with a nonparametric IRT bootstrap procedure 

described in Froelich and Stout (2003). The final DIMTEST statistic provides a statistical 

test for the null hypothesis that the conditional covariances of AT items are small enough 

to conclude the test is unidimensional. 

The reader may wonder why linear exploratory factor analysis (EFA) is not used 

to assess dimensionality compared to a more complex and time-intensive analysis. 

Historically, linear EFA has been used to assess the dimensionality; however, factor 

analysis is problematic as a method of determining dimensionality. Item difficulty can be 

confounded with dimensionality. If the relationship between item performance and latent 

ability is nonlinear, poor model fit can result, which can prevent the analyst from drawing 

conclusions. In addition, factor analysis with dichotomous data is complicated, and 

models can be difficult to estimate (Ackerman, Gierl, & Walker, 2003). 
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 Dimensionality studies are not common among validity studies, but they have 

been used in a variety of ways to investigate the internal structure of scores. Prior to the 

development of DIMTEST, dimensionality was investigated using a principal component 

analysis and multidimensional scaling software to assess the effect of alternative scoring 

methods on the psychometric properties of computation items (Birenbaum & Tatsuoka, 

1983). DIMTEST was used to provide evidence for the construct validity of a set of items 

intended to assess international students’ speaking anxiety by showing that scores on two 

sets of items were not dimensionally distinct (Yang, 2006). Dimensionality studies using 

DIMTEST have provided evidence of differential item functioning (DIF) (Metcalf, 2002) 

and have provided statistical, as well as substantive, corroboration of DIF findings from 

other methods (Gierl, Bisanz, Bisanz, & Boughton, 2003).  

DIMTEST was developed to fill the need in IRT analysis for a statistical 

significance test of the unidimensionality of test items (Stout, 1987). However, this 

procedure may also prove useful in assessing reasons for lack of fit in factor models of 

test scores. In most CFA studies, the scores on indicators linked to a single factor are 

assumed to be unidimensional. Indeed, simple structure specifically depends on the 

assumption of unidimensional measurement, and relaxing that specification (i.e., 

allowing some indicators to “cross load” on two or more factors) has been controversial 

in measurement literature (Kline, 2005). Lack of fit in any given factor model can stem 

from multiple sources, but the unidimensionality of indicators is rarely explicitly 

checked. Instead, researchers analyze models and the details of misfit to guide their 

respecification of models (Brown, 2006; Kline 2005).  
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CIBS-II 

The focus of the present study is the Brigance Comprehensive Inventory of Basic 

Skills-II (CIBS-II; Brigance, 2009), the newest revision in the Brigance inventories 

series. The previous version of the CIBS was commonly used as a screening tool and for 

monitoring the progress of students, particularly in special education programs. This 

study took place as the technical manual and full testing materials were under 

development; thus, no previous validation studies of the CIBS-II or its scores exist.  A 

review of the precursors of the CIBS-II is relevant, as such a review can shed light on the 

new instrument and its development. In particular, research into the validity of scores 

from precursors to the CIBS-II might guide new validity studies. Studies of previous 

versions of the instrument could, for example, suggest a starting point for new 

exploratory or confirmatory studies. 

The Brigance CIBS-II began as an effort by A. H. Brigance to develop a criterion-

referenced system of assessments for special education students (Brigance, 1998). In his 

work as a special-education teacher and administrator, Brigance found that norm-

referenced scores from typical achievement tests did not yield information useful for 

planning individualized instructional programs for students. Brigance’s first published 

instrument was the Inventory of Basic Skills (Brigance, 1976). This first inventory soon 

led to the Diagnostic Inventory of Basic Skills (DIBS; Brigance, 1977), which was 

expanded and modified to become the Comprehensive Inventory of Basic Skills in 1983. 

The Comprehensive Inventory of Basic Skills-Revised (CIBS-R) was published in 1998. 

This major revision included an update of many assessment items to reference then-

current textbooks and the introduction of standardized, norm-referenced, score reporting. 
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The CIBS-R test materials include a bibliography listing the student textbooks and 

professional publications used in the development of the CIBS-R (Brigance, 1998). 

 The introduction of norm-referenced score reporting extended the proposed uses 

of the CIBS-R. The CIBS-R was presented as “a valuable resource in school programs 

emphasizing individualized instruction. The CIBS-R will be especially helpful in 

programs serving students with special needs” (Brigance, 1998, p. ix). The test materials 

state that the CIBS-R components may be used for identification of skills mastered and 

not mastered, as a diagnostic instrument to identify strengths and weaknesses, as a part of 

a testing regimen to identify students with special needs, and “as a standardized testing 

instrument when needed” (p. ix). The claim was made that “the assessments are based on 

curriculum content and objectives” (p. x) and tied to the content and sequence of 

common elementary school textbooks. Skill sequences and grade level expectations were 

reportedly based on what was found in researching multiple textbooks from different 

publishers (Brigance, 1998). 

From the earliest development of the inventory, the subtests were written to 

reflect the grade-level content that appears in textbooks used in elementary schools 

(Connelly, 1985; Brigance 1998). No information was given in the CIBS-R test manual 

to indicate how the author ensured adequate content domain representation; however, in 

its original form, the CIBS was purported to be useful “as a scope and sequence, and 

[educators] may consider or choose specific objectives from it” (Connelly, 1985, p. 4). 

Other studies of the original CIBS include a mention of “field testing and the jury 

system” being used to establish the content validity of the instrument (Linkoas, Enright, 

Messer, & Thomas, 1986; p. 6).  
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Few studies exist to investigate the validity of scores from any of the precursors to 

the CIBS or early versions of the CIBS. As early as 1983, this lack of validity evidence 

was noted: “The test author, while explaining how grade levels were derived, provided no 

statistical data justifying the procedure or verifying the validity of the test scores” 

(Krawiec & Spadafore, 1983, p. 230). The work completed in those few early studies 

focused on content validity (e.g., Ferguson & Kersting, 1988). The CIBS was intended 

only for instructional decision making, as opposed to being used for prediction or 

educational placement. Since no claim was made as to a construct being measured by the 

CIBS subtests, no apparent need existed for construct validity studies. 

With the CIBS-R, a norm-referenced interpretation of some subtest scores was 

added. The combination of norm-referenced and criterion-referenced interpretations was 

meant to facilitate the movement from interpreting scores in a normative fashion (e.g., for 

determining eligibility for special-education programs) to interpreting scores in a skill-

based manner (e.g., for determining objectives to include in an individualized education 

program) (Glascoe, 1999a). Norm-referenced interpretation of scores facilitates 

comparisons of students. Norm-referenced scores are directed toward a student’s relative 

standing. Criterion-referenced score interpretation can complement information about 

relative standing by providing information about exactly what skills students have or 

have not been achieved (Popham, 1978).  

At the same time that norm-referenced interpretation of scores was introduced, the 

test included a composite score structure (see Table 1). Such a structure implies that a 

group of constructs are being measured by the subtests. The technical manual for the 

CIBS-R (Glascoe, 1999b) uses correlations between subtests and assessments as evidence 
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of construct validity; however, this evidence is inadequate, as correlations do not 

necessarily support the intended interpretation of the scores (Cizek, 2001). Further, 

relying only on reliabilities of subscales and correlations among subscales without 

investigating the dimensionality of the scales can lead to erroneous conclusions about the 

structure of a test (Green, 2007).  

Table 1 

Composite Score Structure of the CIBS-II Subtests 

Subtest Composite 

Word Recognition Grade Placement 

Word Analysis Survey 
Basic Reading 

Reading Vocabulary Comprehension Grade Placement 

Comprehends Passage 
Reading Comprehension 

Computational Skills Grade Placement 

Problem Solving Grade Placement 
Math 

Spelling Grade Placement 

Sentence Writing Grade Placement 
Written Expression 

Listening Vocabulary Comprehension Grade Placement Listening Comprehension 

 

Aside from the CIBS-R technical manual published literature shows a complete 

lack of studies into the validity of the composite scores for this instrument or even of its 

subtest scores. Recall that evidence based on the internal structure of the test is one of the 

five main sources of validity evidence recommended in the Standards (AERA et al., 
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1999). Indeed, Standard 1.11 addresses this point directly: “If the rationale for a test use 

or interpretation depends on premises about the relationships among parts of the test, 

evidence concerning the internal structure of the test should be provided” (p. 20). 

Continuing, the comment section for the standard recommends that interrelationships of a 

test’s subtest scores “should be shown to be consistent with the construct(s) being 

assessed” (p. 20).  

Overview of the Present Study 

Validity studies of new or revised instruments are common. Even small changes 

in an instrument may have unpredictable impact on its psychometric properties, which 

necessitates validation of the revised instrument (AERA et al., 1999). Achievement tests 

are subjected to scrutiny since inferences made from the scores on achievement tests can 

have high-stakes impact on examinees. As explained previously, inferences made on the 

basis of composite scores are in particular need of validation. The paucity of studies 

providing evidence of the validity of composite scores from earlier versions of the CIBS 

emphasizes the need for validity studies of CIBS-II scores. Results from a CFA study of 

the internal structure of scores from the CIBS-R standardization sample did not support 

the theoretical structure proposed by the test’s author (Breidenbach & French, 2008). The 

composite score structure of the CIBS-II is very similar to that of the CIBS-R; however, 

the CIBS-II standardization sample is larger and more representative of the intended 

audience than that of the CIBS-R. A careful validation study of the internal structure of 

the CIBS-II will provide important evidence to support interpretations of the test’s 

subscores, both individually and combined in composite scores. 
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Factor analytic studies of achievement instruments are uncommon. Validity 

studies for achievement tests typically do not seek to support the factorial structures of 

the tests (e.g., Daub & Colarusso, 1996; Connolly, 1998; Erford & Dutton, 2005). Even 

though achievement test results are commonly used to make high stakes decisions, “there 

is surprisingly little published evidence that supports the structure of such instruments 

and the validity of their intended use and interpretation” (Stevens & Zvoch, 2007, p. 

977). In two exceptions to this general rule, researchers used factor analysis to investigate 

the structure of achievement tests and could not find support for the structure described 

by the tests’ authors (Erford & Klein, 2007; Williams, Fall, Eaves, Darch, & Woods-

Groves, 2007). In addition, a confirmatory factor analysis (CFA) investigation of part of 

the TerraNova assessment system (CTB/McGraw Hill, 1997) found that the internal 

structure was not as clearly defined as the publisher suggested (Stevens & Zvoch, 2007). 

Comparison of two- and three-factor models found little difference in fit, suggesting that 

some content areas are not well represented in the test structure. Such studies emphasize 

the point that if composite scores are to be reported and used in interpreting students’ 

results, factorial validity evidence must exist to support such use (Williams et al., 2007). 

The current study uses the CIBS-II national standardization sample to investigate 

the factor structure of CIBS-II subtest scores. The dimensionality of the subtest scores are 

investigated with DIMTEST, and the CIBS-II’s theoretical structure is examined via 

confirmatory factor analysis. The theoretical structure is tested along with competing 

models that were derived from substantive examination of the content of subtests and 

from results of the DIMTEST dimensionality analysis. 
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CHAPTER THREE 

METHODOLOGY 

 

Participants 

 Data for this study comes from the national standardization study for the 

Comprehensive Inventory of Basic Skills-II (CIBS-II; French & Glascoe, 2009). The 

goals of the national standardization study were to develop a sample representative of the 

United States population of school children in grades K–6, administer nine of the CIBS-II 

subtests to the children in the sample, and use their scores to (a) investigate the 

psychometric properties of the test items and subtest scores and (b) develop standard 

scores and normative tables. 

 Teachers from the four geographic regions (Northeast, Midwest, South, and West) 

in the United States were recruited to administer the assessments to small numbers of 

students. Teacher selection was guided by geographic region, grade level taught, and 

accessibility. That is, teachers were selected based on ability of the study organizers to 

access (usually via e-mail) the teachers. Participating teachers were given directions to 

select students with a wide variety of achievement levels. The specific instructions 

guided teachers via an example: “If, for example, you select 6 children please select: 1 

child whom you believe is performing above average, 4 who are performing averagely, 

and 1 who is performing below average.” Participating teachers were paid $30 for each 

completed test form.  

 The data collection for this project was implemented at Purdue University. The 

university’s Institutional Review Board ruled that the study was exempt from informed 
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consent requirements because administering the CIBS-II is considered standard 

educational practice and because data was collected with no personally identifiable 

information. Nonetheless, parents were given the chance to opt their child out of the 

study with a brief permission letter that was included with an optional parent survey. The 

parent survey asked for demographic information about the child and family and invited 

parents to share concerns over a variety of topics related to the child’s educational 

development. 

 A full description of the standardization sample is given in the test manual 

(French & Glascoe, 2009), and a brief summary is presented here. The sample (N = 

1,411) matches closely the U.S. population on a number of important demographic 

variables (e.g., age, race/ethnicity, geographic region) as reported in the U.S. Bureau of 

the Census projections for 2007 and the U.S. Department of Education’s National Center 

for Education Statistics (Hussar & Bailey, 2006). Geographic distribution, gender, age, 

and racial/ethnic categories are reported in Tables 2–5. To allow for model cross-

validation, records were randomly assigned to two subgroups of 706 and 705 participants. 

No effort was made to match the subgroups on any variable in order to more closely 

approximate independent random samples. 
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Table 2 

Distribution of Examinees by Region, Compared to U.S. Population 

Region Sample U.S. 

 N % % 

Midwest 502 36 22 

Northeast 164 12 17 

South 445 32 37 

West 300 21 24 

Total 1411   

Note. U.S. distribution is based on Hussar & Bailey, 2006. 

 

 

Table 3 

Distribution of Examinees by Gender and Region 

Region Female Male No report Total 

Midwest 226 251 25 502 

Northeast 82 82  164 

South 213 232  445 

West 159 139 2 300 

Total 680 704 27 1411 
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Table 4 

Distribution of Examinees by Race/Ethnicity, Compared to U.S. population 

Region White 
African-
American 

Hispanic Asian Other Multiple Missing 

Midwest 42% 26% 15% 3% 2% 4% 7% 

Northeast 88% 4% 2% 3% 2% 1% 1% 

South 42% 24% 25% 1% 2% 4% 1% 

West 45% 10% 25% 3% 6% 8% 3% 

Total sample 48% 20% 19% 2% 3% 4% 4% 

U.S. Population 60% 15% 18% 4% 1% 2%  

Note. U.S. distribution is based on Hussar & Bailey, 2006. 

 

 

Table 5 

Distribution of Examinees by Age and Region 

 Region  

Grade Midwest Northeast South West Total 

1 82 61 98 74 315 

2 79 42 60 42 223 

3 50 14 31 78 173 

4 63 13 102 37 215 

5 87 28 104 21 240 

6 141 6 50 48 245 

Total 502 164 445 300 1411 
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Instrument 

 The grades 1–6 form of the CIBS-II includes more than 150 subtests, which range 

from teacher checklists to performance tasks to subtests composed of dichotomously 

scored items. Nine dichotomously scored subtests (described below) were selected by the 

instrument’s publisher to be standardized. Throughout this study, the general name 

“CIBS-II” refers to the nine subtests selected by the publisher. The CIBS-II scales are 

intended to be administered individually but do not require specialized training. Children 

respond orally or on student response pages, and scoring is marked on the corresponding 

teacher pages, which includes the answer key. 

 The nine subtests are designed to cluster into four composites and one indicator. 

A brief description of each composite and its associated subtests follows: 

Basic Reading Composite 

1. Word Recognition Grade Placement Subtest: Children are asked to quickly read aloud 

words arranged into lists by grade level, from preprimer to grade eight. 

2. Word Analysis Survey: Children are asked to respond to auditory discrimination items 

(i.e., respond “yes” or “no” to indicate whether two words read by the test administrator 

sound exactly the same), to identify sounds heard in words read aloud by the test 

administrator, to read aloud words and nonsense words to sample phonemic awareness, 

and to divide words into syllables. 

Reading Comprehension Composite 

3. Reading Vocabulary Comprehension Grade Placement Test: Children indicate single-

word vocabulary comprehension of printed words by choosing the one word with a 

different meaning from groups of five words each. 
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4. Comprehends Passages Subtest: Children read a short passage between primer and 

grade nine levels and answer five oral-response, multiple-choice questions about the 

passage.  

Math Composite 

5. Computational Skills Grade Placement Test: Children solve arithmetic problems 

involving addition, subtraction, multiplication, division, fractions, and percentages. 

Problems are arranged by grade level (grades one through eight). 

6. Problem Solving Grade Placement Test: Children solve arithmetic word problems. 

Problems are read aloud to grades 1–3 students while the student reads a printed version. 

Grades 4–6 children read the printed problem with assistance if needed. 

Written Expression Composite 

7. Spelling Grade Placement Test: This subtest is a standard written spelling test with 

words arranged in first-grade through eighth-grade lists. 

8. Sentence Writing Grade Placement Test: Children are given three (grades 1–3 level) to 

four (grades 4–6 level) words and attempt to compose a single sentence using the words. 

Listening Comprehension Indicator 

9. Listening Vocabulary Comprehension Grade Placement Test: This subtest is not 

designed to correspond to any of the composites. Children indicate single-word 

vocabulary comprehension of words read aloud by the test administrator by choosing the 

one word with a different meaning from groups of four words each. 

 All subtests are presented in two forms. The forms are intended to be parallel and 

allow for pre- and post-testing of students without score inflation due to practice effects. 



 

40 

The parallel forms also allow test administrators to re-test a student if an initial test 

administration is invalidated for any reason. 

Variables 

 Subtest raw scores are simple sums of the number of correct responses. Many 

subtests have entry and discontinue rules (i.e., basal and ceiling rules). Items before the 

entry rule are scored as correct, and items after the discontinue rule are scored as 

incorrect. Composite scores are simple sums of the subtests scaled scores corresponding 

to the composite. 

Statistical equating (Kolen & Brennan, 2004) was used to adjust scores for 

differences in the difficulty of the two forms of the subtests (French & Glascoe, 2009). 

All Form B raw scores were transformed to Form A equivalents. After equating, the 

adjusted raw subtest scores were normalized by age category and scaled to have a mean 

of 10 and a standard deviation of 3. Composite scores were created by summing the 

subtest scaled scores associated with the respective composite and then reported as 

standard scores, with mean 100 and standard deviation 15. Descriptive statistics for the 

subtests, including reliability estimates, are presented in Table 6. 

Analysis 

Dimensionality of Subtests 

 DIMTEST (Stout, 2006) was used to investigate the dimensionality of each 

subtest. Since it is exceedingly rare for real scores to show true unidimensionality, 

DIMTEST provides a statistical test of essential unidimensionality (Nandakumar, 1991). 

Scores that are essentially unidimensional may have one or more minor dimensions, but 

these minor dimensions are unimportant and not interpretable. 
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Table 6 

Descriptive Statistics for CIBS-II Subtest Scaled Scores 

 M SD Reliability Skew Kurtosis 

Comprehends Passages 10.372 2.670 . 974 -0.028 -0.303 

Computation 9.709 2.197 .925 -0.019 -0.305 

Listening Vocabulary 10.002 2.268 .894 0.024 -0.357 

Problem Solving 9.536 2.136 .859 0.030 -0.275 

Reading Vocabulary 9.627 2.397 .921 0.079 -0.286 

Sentence Writing 9.860 2.510 .807 0.058 -0.351 

Spelling 10.035 2.121 .960 0.116 -0.535 

Word Analysis 10.372 2.670 .955 -0.028 -0.303 

Word Recognition 9.709 2.197 .987 -0.019 -0.305 

 

 DIMTEST is a nonparametric procedure to test the hypothesis that a test is 

essentially unidimensional. The DIMTEST procedure uses scores from a two-group 

partition of the test items. The assessment subtest (AT) consists of items that are 

presumed to be dimensionally distinct from other items in the test. The partitioning 

subtest (PT) consists of all test items not in AT. The DIMTEST procedure then calculates 

a statistic to test the null hypothesis that the conditional covariances of AT items are 

small, which indicates that the AT set is dimensionally similar to PT, versus the 

alternative hypothesis that the AT set is dimensionally distinct from PT. A statistically 

significant result is evidence that the test is not essentially unidimensional (Stout, 2006).  

 DIMTEST can be performed in a confirmatory sense if a set of items are 

suspected to be dimensionally distinct from the remainder of the test. Alternatively, 

DIMTEST can be used in an exploratory manner by using a statistically based 
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partitioning method. Performance of DIMTEST to detect multidimensionality depends 

greatly on the choice of AT. Early implementation of DIMTEST recommended the use of 

linear factor analysis or expert content analysis to choose dimensionally distinct items for 

the AT (Stout, 1987); however, the method of using factor analysis has been shown to 

perform poorly in many situations, and content analysis can sometimes fail to detect 

statistical dimensions (e.g., a dimension related to speededness) that are not apparent in 

the items’ content (Froelich & Habing, 2008).  

 For the present study, a method developed by Froelich and Habing (2008) that 

relies on conditional covariance-based cluster analysis (CCPROX/HAC; Roussos, Stout, 

& Marden, 1998) to identify potential AT partitions coupled with the DETECT procedure 

(Kim, 1994; Zhang & Stout, 1999) was used to select the “best” of the potential AT sets 

(i.e., the AT set with the greatest DETECT index was used to calculate the DIMTEST 

statistic). 

 CCPROX/HAC is a two-step procedure to produce a hierarchical cluster analysis 

based on conditional covariance. In the analysis, each item is considered a separate 

cluster, and the conditional-covariance-based proximity of clusters is used to combine 

clusters. The clustering continues until the entire test is joined into a single cluster (Stout, 

2006). For the present study, this procedure was used with each subtest to generate 

potential partitions into AT/PT sets, where a potential AT set must contain at least 4 

items but not more than half the subtest’s items. 

DETECT can stand alone as an exploratory procedure to determine the number of 

dimensions in a test and identify which dimension is measured by each item. Included in 

that exploratory process is an effect size for multidimensionality, the DETECT index. In 
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a confirmatory mode, the DETECT index can be calculated for a collection of different 

groupings of items. For the present study, the DETECT index was calculated for each 

partition identified in the previous step, and the “best” partition of items for DIMTEST 

analysis was the partition with the highest DETECT index, since that partition showed 

the best evidence of representing distinct dimensions.  

 To avoid capitalizing on chance, one-third of the student responses were used to 

select the AT set, and the remaining two-thirds were used to calculate the DIMTEST 

statistic (Froelich & Habing, 2008). Each examinee was assigned a random number 

between 0 and 1. Participants were used to select the AT set if their assigned numbers 

were less than the 33rd percentile of all the assigned random numbers. This method of 

group assignment resulted in a random sample of one-third of the respondents being 

assigned to the AT selection group. 

Factor Structure 

The factor structure of the nine subtests was examined with confirmatory factor 

analysis (CFA), which allowed for analysis of the structure of the scores as well as 

validation of proposed structures. To allow for model cross-validation, the sample was 

randomly split into two subgroups. Each participant was assigned a random number 

between 0 and 1. Participants were assigned to subgroup 1 if their assigned random 

numbers were less than the median of all assigned numbers. This method of assignment 

resulted in random assignment to subgroups with 706 and 705 subjects. Separating the 

standardization sample into two random subgroups allowed for the option to cross-

validate the best-fitting model. 
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The standardization sample appears to be a multilevel structure, that is, students 

are nested within classrooms. With multilevel data, observations are not completely 

independent, which violates the assumptions of many statistical models, including factor 

analysis. Nonindependence in such models can bias the results: model parameters tend to 

be overestimated, and their standard errors are underestimated, thus increasing Type I 

error rates (Bliese & Hanges, 2004; Julian, 2001). However, multilevel analysis with 

severely unbalanced groups can result in models that fail to converge or in an inability to 

estimate some parameters (Muthén, 1989; Raudenbusch & Bryk, 2002; Singer & Willet, 

2003). 

In the standardization sample, at least 193 different teachers submitted data (57 

observations do not include teacher name). Teachers submitted numbers of test booklets 

ranging from 1 to 42. Sixty teachers submitted only 1 test booklet each, the mean number 

submitted was 7, and the median number submitted was 3.5. Examination of test booklets 

and parent surveys indicate that some participating teachers used “teacher name” to 

indicate the child’s classroom teacher, while others interpreted “teacher name” to indicate 

the name of the examination administrator. Thus, the multilevel structure of the sample is 

quite ill-defined and unbalanced. Consequently, it was decided that multilevel analysis 

was inappropriate.   

Model specification  

The hallmark of CFA is the use of competing models. In the present study, four 

plausible models (Figures 2–5) were posited prior to analysis. These are presented on the 

following pages. 
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Model 1 is a one-factor model to test the hypothesis that the subtests are simply 

facets of a single “achievement” trait.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Model 1, a one-factor model. 
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Model 2 is the test author’s model, which was inferred from the composite score 

structure for the CIBS-II (see Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Model 2, a five-factor model. Covariances between the 

five latent variables will be estimated freely. Paths are not shown in 

the figure for the sake of clarity. 
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A potential Model 3 (see Figure 4) would extend Model 2 to test the hypothesis 

that the constructs influencing subtest scores are all related to a higher-order “general 

achievement factor.” This model should be estimated only if the correlations between 

factors in Model 2 support the existence of a higher-order factor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Model 3, a five-factor model with one second-order 

general factor. 
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Model 4 (see Figure 5) is a three-factor model based on the supposition that all 

reading-related subtests should be linked to a general reading factor and that the 

Listening Comprehension subtest taps understandings of word meanings exclusive of 

reading, which is more akin to a writing-related skill. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Model 4, a three-factor model. Covariances between the 

three latent variables will be estimated freely. Paths are not shown in 

the figure for the sake of clarity. 
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unobservable. Manifest variables, the observable indicators, are used to infer information 

about the unobservable latent variables. In using Model 2 to represent the composite 

score structure, the Listening Comprehension Indicator is included as a latent factor with 

a single indicator. Single-indicator factors pose technical and substantive problems in 

latent variable models.  

The technical problem arises because a latent factor with a single indicator creates 

an indeterminate, or under-identified, model. A solution cannot be estimated. This 

problem is resolved by setting the pattern coefficient to a specific value, in this case 1, 

and setting the error variance for the indicator to a specific value, usually 0 or some other 

estimate of error. In this case, an estimate based on the reliability and the variance of the 

subtest is used. 

Substantively, there is disagreement over whether a latent factor with a single 

indicator should be considered a factor at all, because a factor is meant to account for 

shared variance among a set of observed indicators (Brown, 2006). Indicators have error, 

which create inaccuracy in measuring a latent variable. Using multiple indicators helps 

reduce the effect of the error because the error is part of the model. In addition, it is 

possible that not all of an indicator’s variance reflects the latent construct so the score on 

the single indicator does not perfectly assess the construct (Kline, 2005). Again, multiple 

indicators resolve this problem, since their common variance is used to make inferences 

about the latent variable. Controversy aside, the composite score structure for the CIBS-II 

was developed by the test’s author, and the model based on that structure was tested. 

CFA modeling can be used in an exploratory manner by using modification 

indices to guide model respecification. A modification index can suggest adding a 
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parameter to the model; for example, the index might indicate that allowing an indicator 

to load on two factors would improve the fit of the model. Following such a suggestion 

without substantive reason is likely to lead to capitalization on chance. Modification 

indices should only prompt respecification if a theoretically defensible argument in 

support of the change can be made (Brown, 2006; Jöreskog & Sörbom, 1996). 

Respecifying models on the basis of results from a particular sample can lead to 

results that are peculiar to that sample. A model is examined, adjustments are made to the 

model, and then the modified model is refit using the same data. Cross-validating the 

respecified model with data from an independent sample provides evidence that the new 

model is not merely capitalizing on chance features of the original sample (MacCallum, 

1995). 

Estimation 

Maximum likelihood (ML) estimation is the most common method of fitting data 

to CFA models (Jöreskog & Sörbom, 1996; Kline, 2005). This method is appropriate 

only for continuous multivariate normal data, although it is robust to minor departures 

from normality. Use of ML when data show pronounced departure from normality is 

known to produce unreliable results, including inaccurate fit statistics and under-

estimation of standard errors (Brown, 2006).  

 Means, standard deviations, skew, and kurtosis for the nine subtests’ scale scores 

are reported in Table 6. The individual subtest scores do not show dramatic departures 

from normal distributions; however, univariate normality of variables is a necessary but 

not sufficient condition for MVN. PRELIS 2.8, a data preprocessing program for 

LISREL 8.80 (Jöreskog & Sörbom, 2006), was used assess the multivariate normality 
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(MVN) of the subtest scores. The relative multivariate kurtosis of the scores is 1.064. 

Bentler (1998) recommends that MVN can be assumed when this index is below 3.0. 

Based on this evidence of MVN, LISREL 8.80 with ML estimation was used to estimate 

the models in this analysis. 

Evaluation of model fit 

Model fit was evaluated using a combination of fit indices, following the 

recommendations of Hu and Bentler (1999) and Brown (2006). Brown categorizes fit 

indices as measures of absolute fit, measures adjusted for parsimony, and measures of 

comparative or incremental fit. The χ2 statistic is a measure of absolute model fit. The 

sensitivity of χ2 to sample size is widely reported. For moderate to large sample sizes, the 

χ
2 statistic is sensitive to even small differences between the input covariance matrix and 

the model implied covariance matrix, causing the model to be spuriously rejected. 

However, χ2 statistics are useful in comparing nested models, so they are routinely 

reported. 

 The standardized root mean square residual index (SRMR) is another measure of 

absolute fit. Its value is not dependent on sample size, making it a better index of absolute 

fit. Brown describes the SRMR as “the average discrepancy between the correlations 

observed in the input matrix and the correlations predicted by the model” (2006, p. 82). 

SRMR varies between 0 and 1, with small values reflecting better fit. Hu and Bentler 

(1999) suggest that SRMR < .08 implies reasonable fit, although this index should not be 

used in isolation. 

 The root mean square error of approximation (RMSEA) index assesses absolute 

fit, but it also accounts for parsimony in that it can be interpreted as average discrepancy 
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between the input matrix and model-implied matrix per each degree of freedom. All else 

held equal, a complex model with many degrees of freedom (i.e., fewer freely estimated 

parameters) will have a lower RMSEA than a model with few degrees of freedom. 

RMSEA is positive number, and values near zero imply good fit. Following the 

recommendation of Hu and Bentler (1999) RMSEA < .06 was used as an indication of 

reasonable fit. 

 The comparative fit index (CFI; Bentler, 1990) compares the fit of the tested 

model against the fit of an independence model implying no relationship among the 

variables. The Tucker-Lewis index (TLI; Tucker & Lewis, 1973), also known as the non-

normed fit index (NNFI), also compares the tested model to the independence model, but 

it penalizes models with an excessive number of freely estimated parameters. CFI and 

TLI both approach 1 for well-fitted models. Hu and Bentler (1999) suggest that values of 

CFI and TLI above about .95 imply reasonable fit. 

 Models were judged as having acceptable fit only if all the selected fit statistics 

fell within acceptable range. In particular, RMSEA was given careful consideration since 

it gives preference to more parsimonious models (i.e., more degrees of freedom). In sum, 

then, the collection of fit indices used to judge model fit in this study were: SRMR < .08, 

RMSEA < .06, CFI > .95, and TLI > .95. In addition to reviewing fit indices, parameter 

estimates were also used in judging models. Parameter admissibility, significance, and 

interpretability helped guide model choice. Models were also evaluated by examining 

modification indices and residuals. Residuals for good fitting models should be 

approximately normally distributed, and standardized residuals with magnitude greater 

than 2 may indicate localized poor fit. 
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Conclusion 

 The instrument under examination in this study is a collection of nine subtests 

from the CIBS-II, which in its full form contains more than 150 subtests and checklists. 

The nine subtests under study were chosen to be standardized with a large representative 

norming sample. Validation of an instrument can be viewed as building an argument in 

support of interpreting test scores in a particular way for a particular purpose (Kane, 

2006). The CIBS-II standardized scoring sheet produces four composite scores (basic 

reading, reading comprehension, math, and written expression) and a listening 

comprehension indicator score. A strong argument in support of reporting the nine CIBS-

II subtest scores according to these five scores would be the existence of a five-factor 

model corresponding to the scoring structure (i.e., Model 2). 

 This study investigated the proposed internal structure of the test scores by 

examining the dimensionality of the subtests using the DIMTEST procedure (Stout, 

1987; Froelich & Stout, 2003; Froelich & Habing, 2008). Results of the dimensionality 

study may also help interpret CFA models. The study also investigated the fit of CIBS-II 

subtest scores from the standardization sample to the model implied by the score 

structure as well as to other theoretically plausible models. The sample was randomly 

split in half to allow one sample to be used to test and respecify models while holding the 

second sample in reserve for cross-validation of the selected model.  
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CHAPTER FOUR 

RESULTS 

 

In this chapter, results are reported for the DIMTEST analysis of dimensionality, 

and then results are reported for the confirmatory factor analysis (CFA) study of the 

factor structure of the CIBS-II subtest scores.  

Dimensionality/DIMTEST 

The DIMTEST procedure produces a statistical test of the null hypothesis that a 

test is essentially unidimensional. The procedure uses a subset of the items called the 

assessment test (AT), which is suspected of being dimensionally distinct from the 

remaining items in the test (the partitioning test, or PT). DIMTEST estimates the 

conditional covariances of all pairs of items in AT, conditional on PT scores. The average 

of these conditional covariances over all possible PT scores is used to produce the 

DIMTEST statistic. After a bootstrap bias correction is applied, the final statistic has an 

asymptotically normal distribution. 

 The success of DIMTEST in detecting a lack of essential unidimensionality 

depends on the choice of AT. If multidimensionality is suspected based on the content of 

some items, DIMTEST can be applied in a confirmatory manner by choosing AT items 

based on their content. For this study, DIMTEST was used in an exploratory mode. 

Following a method described by Froelich and Habing (2008), conditional covariance-

based cluster analysis (CCPROX/HAC, Stout, 2006; Roussos, Stout, & Marden, 1998) 

was used to identify potential AT sets. The DETECT index (Kim, 1994; Zhang & Stout, 
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1999; Stout, 2006) was calculated for each of the potential AT sets. The set with the 

highest DETECT index was selected as the target AT set.  

 For the present study, responses from one-third of the examinees (487) were 

randomly selected to use in selecting the AT sets for each subtest (Froelich & Habing, 

2008). The remaining two-thirds were used in the DIMTEST analysis. 

 Using the 24-item listening vocabulary subtest as an example, of the 24 

hierarchical clusters generated by CCPROX/HAC, ten met the criteria for potential AT 

sets: the set must contain at least 4 items but not more than half the items. The DETECT 

procedure was applied to each potential AT set, and the index was recorded. The 

potential AT sets for the listening vocabulary subtest and their DETECT index values are 

shown in Table 7. AT set number 7 was tentatively selected since its DETECT value was 

greatest. 

 The DIMTEST program (Stout, 2006) includes a routine called ATFIND, which 

applies a different combination of CCPROX/HAC and DETECT analyses to identify a 

candidate AT set. Before selecting the final AT set, ATFIND was used, and its results 

were compared to the results from the procedure described above. For example, for the 

listening vocabulary subtest, ATFIND identified potential AT set 9 from Table 7. Since 

the DETECT value for set 9 is lower than that for set 7, the final AT set chosen for 

DIMTEST analysis of the listening vocabulary subtest was set number 7. 

For the DIMTEST analyses of the nine CIBS-II subtests in this study, five used 

the AT set identified by ATFIND, and four used the AT set selected from the two-step 

procedure described by Froelich and Habing (2008). A summary of the number of items 
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in the final AT set for each subtest is presented in Table 8. A full listing of items selected 

for each subtest is presented in the Appendix. 

Table 7 

Potential AT Sets for the Listening Vocabulary Subtest 

AT Set Number 1 2 3 4 5 6 7 8 9 10 

Items 4 4 4 4 4 10 6 6 8 8 

 10 10 10 10 10 14 7 8 9 9 

 13 13 13 14 14 18 8 9 11 11 

 14 14 14 18 18 21 9 11 12 12 

 17 17 17 21 21  11 12 15 15 

 18 18 18 22   12 15 16  

 19 19 21    15 16   

 20 21 22    16    

 21 22         

 22          

DETECT  Index .386 .357 .308 .245 .182 .143 .409 .392 .343 .274 

 

Table 8 

Number of Items in Each Final AT Set 

wordrec wordanly readvoc compass compute probsol spell sentwrit listnvoc 

35* 17* 8* 18* 12* 8 13 4 8 

Note. For subtests marked with an asterisk, ATFIND identified the AT set. For the others, 

the two step procedure described identified the AT set. Subtest names are abbreviated in 

all tables as follows: wordrec = word recognition; wordanly = word analysis; readvoc = 

reading vocabulary; compass = comprehends passages; compute = computation; probsol 

= problem solving; spell = spelling; sentwrit = sentence writing; listnvoc = listening 

vocabulary. 
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Results of the DIMTEST analyses are presented in Table 9. For each subtest, the 

DIMTEST statistic T, the p-value for the statistic under the null hypothesis of essential 

unidimensionality, and the conclusion drawn about the subtest’s dimensional structure 

are given. For the comprehends passages subtest, computation subtest, problem solving 

subtest, and spelling subtest, the null hypothesis of essential unidimensionality could not 

be rejected, so it was concluded that these subtests are essentially unidimensional. The 

null hypothesis was rejected for the five other subtests, so it was concluded that the 

assumption of essential unidimensionality of these subtests is untenable. The implications 

of these results are discussed in Chapter Five. 

Table 9 

DIMTEST Results for Each Subtest 

 wordrec wordanly readvoc compass compute probsol spell sentwrit listnvoc 

T 4.771 6.696 5.505 -0.715 0.414 -0.520 -0.789 6.868 5.696 

p <.00001 <.00001 <.00001 0.763 0.340 0.699 0.785 <.00001 <.00001 

Dim Multi Multi Multi Uni Uni Uni Uni Multi Multi 

Note. T is the DIMTEST statistic. Dim = dimensionality; Multi = multidimensional; Uni 

= Unidimensional. 

 

Internal Structure/CFA 

To assess the extent to which the standardization data conform to the factor 

structure suggested by the test’s author, the data were fit to a series of factor models 

using confirmatory factor analysis (CFA). As described previously, CFA can provide 

evidence in support of a particular model in two ways: (1) by providing fit indices that 

describe the extent to which the data fit the hypothesized model, and (2) by fitting the 
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data to competing models to show whether the hypothesized model fits better than other 

plausible models (Thompson, 2004). 

 LISREL 8.80 (Jöreskog & Sörbom, 2006) was used to fit the data to the various 

models. The estimation and iteration procedure is based on calculations with the 

covariance matrix. As described earlier, the data were randomly split into two groups. 

Subgroup 1 was used for model fitting and respecification (a quasi-exploratory process) 

followed by cross-validation of the favored model with subgroup 2. The covariance 

matrices for each subgroup are presented in Tables 10 and 11. 

Four models were posited prior to analysis. Path diagrams for the four models are 

shown on pages 45–48. Model 1 was a single factor model. This model is the simplest 

(i.e., most parsimonious) and provides a check of the possibility that the nine subtests are 

all indicators of a general achievement factor. Model 2 is a five-factor model that 

corresponds to the composite score structure presented by the test’s author. Model 3 is an 

extension of Model 2 wherein the common variance among the five factors from Model 2 

is modeled as being influenced by a second order factor. Model 4 was specified based on 

subjective content analysis of the subtests. This model posits that the nine subtests are 

indicators of three factors called Reading, Math, and Writing. In Model 4 the Listening 

Vocabulary Subtest is assumed to assess understandings of word meanings exclusive of 

reading, which is more akin to a writing-related skill, so it is assumed to be an indicator 

for the Writing factor. 

 



 

 

Table 10 

Covariance Matrix of Subgroup 1 Standardization Data 

 wordrec wordanly readvoc compass compute probsolv spell sentwrit listnvoc 

wordrec 9.700         

wordanly 6.050 8.036        

readvoc 5.070 3.875 5.646       

compass 5.673 4.333 4.103 7.311      

compute 3.260 2.643 2.432 2.870 4.647     

probsolv 3.542 2.948 2.813 3.241 2.690 4.515    

spell 6.133 4.434 3.633 4.071 2.823 2.837 6.323   

sentwrit 3.780 2.983 2.578 2.984 2.199 2.185 3.230 4.418  

listnvoc 4.017 3.143 3.331 3.603 1.955 2.401 2.706 2.056 5.298 
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Table 11 

Covariance Matrix of Subgroup2 Standardization Data 

 wordrec wordanly readvoc compass compute probsolv spell sentwrit listnvoc 

wordrec 9.489         

wordanly 6.535 8.820        

readvoc 5.152 4.318 5.8349       

compass 5.728 4.861 4.238 6.926      

compute 3.676 3.123 2.744 3.278 5.006     

probsolv 3.748 3.507 2.786 3.364 3.105 4.608    

spell 6.176 5.144 3.787 4.335 2.986 2.945 6.245   

sentwrit 3.908 3.224 2.618 3.066 2.301 2.029 3.163 4.580  

listnvoc 3.933 2.913 3.176 3.438 2.227 2.320 3.018 2.067 4.992 

 

 

 

60 



 

61 

 In the following sections, fit indices of these models are presented and compared. 

The fit indices for all four models are summarized in Table 12. Interpretation and 

subsequent model specification is described following the initial results for Models 1–4.  

Table 12 

Model Fit Indices for Models 1–4 

Model χ2 df p RMSEA SRMR CFI TLI 

1 271.904 27 < .0001 .113 .041 .972 .972 

2 47.470 18 .0002 .048 .021 .996 .996 

3 159.833 23 < .0001 .096 .032 .983 .983 

4 188.171 24 < .0001 .099 .033 .981 .981 

 

 

Model 1 

 Model 1, the single-factor model, represents an extreme of parsimony and may be 

considered less plausible than a multi-factor model. Comparing a target model to an 

implausible model is not considered good practice; results on the basis of such 

comparison lack strength, since the competing model is a “straw man” (Brown, 2006; 

Kline, 2005). However, analysis that rules out this simple model provides support for the 

existence of a multifactor model (Thompson, 2004). 

 Model fit indices in Table 12 indicate that Model 1 has poor fit, with a very low 

p-value and RMSEA well above the cutoff. Given the complex theoretical structure 

suggested by the author, Model 1 was not examined further. 
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Model 2 

 Model 2 represents the five-factor structure implied by the composite score 

structure of the CIBS-II subtests. The listening vocabulary subtest is the only indicator on 

the Listening Comprehension factor. In factor analysis, a “factor” accounts for common 

variance among a set of indicators. Therefore, the Listening Comprehension factor is 

treated as a “pseudofactor” (Brown, 2006, p. 141). In practice, this distinction has little 

impact on estimation of the model, with the exception of consideration of measurement 

error. 

In CFA, the measurement error (i.e.,9ε  in Figure 3) is conceived of as the amount 

of variance in the indicator that is not accounted for by the factor. With a single indicator 

linked to a factor, attempting to estimate the measurement error can cause serious 

problems with overall model estimation (Kline, 2005). Fixing measurement error of the 

indicator to a set value resolves this problem. A reasonable estimate for error variance 

comes from using a reliability index and the variance of the indicator (Kline, 2005): 

2
9 9 9(1 )s rε = − . 

The reliability of the listening vocabulary subtest as measured by Cronbach’s alpha is 

.894, which suggests that 1 .894 .106− =  represents the proportion of variance in listening 

vocabulary scores due to error. The variance for this subtest is 5.145, so 

(.106)(5.145) .545=  was used as the estimate of error variance for this subtest. 

 Model 2 showed good fit (see Table 12). As an extra check on RMSEA, the 90% 

confidence interval (0.0181, 0.0763) was examined. The upper bound of this interval is 

higher than the acceptable cutoff for RMSEA, which suggests possible room for 
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improvement to the model. However, RMSEA values between .05 and .08 have been 

suggested as indicating reasonable fit (Browne & Cudeck, 1993).  

The largest modification index was 22.985 for the error covariance between the 

spelling subtest and the word recognition subtest. The next highest was 17.314 for the 

error covariance between the sentence writing subtest and the word recognition subtest. 

This pattern of common variance between a Basic Reading indicator and the Written 

Expression indicators could also be seen in the factor correlation matrix. The correlation 

between the Basic Reading factor and the Written Expression factor was quite large 

(.959). In addition, the correlation between Basic Reading and Reading Comprehension 

was also large (.936). Parameter estimates and ad hoc respecification of Model 2 are 

reported later in this chapter. 

Model 3 

 Model 3 adds a second-order factor to Model 2 to account for the interfactor 

correlations. Since this model uses five estimated parameters (the pattern coefficients of 

the first-order factors on the second-order factor) to account for the ten estimated 

interfactor correlations in Model 2, Model 3 is more parsimonious. In reducing the 

number of freely estimated parameters in a model, model fit is necessarily degraded. If, 

however, the more parsimonious solution still has acceptable fit, it is preferred over the 

more complex model.  

 Fit for Model 3 (see Table 12) was substantially degraded as compared to Model 

2, with a much lower p-value and a marked increase in RMSEA. Even the lower bound of 

the 90% confidence interval for RMSEA (0.0826, 0.1093) was above the specified cutoff 

for adequate fit. Model 3 is nested under Model 2, so the χ2-difference test can be used to 
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judge whether Model 2 provides significantly better fit. The χ2-difference between Model 

3 and Model 2 was 112.363 with 5 degrees of freedom, which indicates that Model 2 

yields significantly better fit (p < .0001). It was decided that exploring improvements to 

Model 2 fit was a higher priority than making respecifications to Model 3. 

Model 4 

Model 4 is a three-factor model based on the assumption that the four reading-

related subtests measure one Reading factor and that the listening vocabulary subtest 

could be linked to the Written Expression factor since the subtest dealt with word 

meanings without accounting explicitly for reading (i.e., the test was administered 

verbally). As was the case for Model 3, this model has fewer estimated parameters than 

Model 2, so model fit is necessarily degraded. Nonetheless, the model warrants 

consideration because a more parsimonious solution is preferred if it has acceptable fit. 

 Model 4 produced an inadmissible solution: the completely standardized 

correlation between the Reading and Writing factors was estimated to be 1.023. 

Inadmissible solutions generally result from misspecified models (Brown, 2006; Jöreskog 

& Sörbom, 1996). This model also produced many large residuals (differences between 

the input covariance matrix and the model-implied covariance matrix) and had fit indices 

that were substantially worse than those for Model 2.    

Model 2 Parameters 

 After Model 2 was identified as the best fitting model of the initial models, its 

parameters were investigated. LISREL calculates a standard error estimate for all 

estimated parameters, which allows the statistical significance of the parameters to be 

evaluated. In Model 2, all parameters were found to be statistically significant (i.e., p-
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values <  0.01). The completely standardized solution standardizes all parameters and 

allows them to be compared directly; therefore, the completely standardized solution is 

presented here. Tables 13, 14, and 15 present the model’s pattern coefficients, structure 

coefficients, and factor correlations, respectively. 

 The structure coefficients are interpreted as the correlation between indicators and 

factors. Although the theoretical basis of Model 2 assumes, for example, that the Basic 

Reading factor directly influences only the word analysis subtest scores and word 

recognition subtest scores, the structure coefficients show that for subgroup 1 of the 

standardization sample, the Basic Reading factor and the spelling subtest had a 

correlation coefficient of .843. The Basic Reading, Reading Comprehension, and Written 

Expression factors each had at least one subtest with a structure coefficient higher than 

one of its estimated pattern coefficients. 

Table 13 

Pattern Coefficients for Model 2 

 Basic_Rd Rd_Comp Math Write Listen 

wordrec 0.912 - - - - - - - - 

wordanly 0.752 - - - - - - - - 

readvoc - - 0.806 - - - - - - 

compass - - 0.792 - - - - - - 

compute - - - - 0.728 - - - - 

probsolv - - - - 0.806 - - - - 

spell - - - - - - 0.879 - - 

sentwrit - - - - - - 0.695 - - 

listnvoc - - - - - - - - 0.947 

Note. Parameters fixed at zero are represented with dashes.  
 



 

66 

Table 14 

Structure Coefficients for Model 2 

 Basic_Rd Rd_Comp Math Write Listen 

wordrec 0.912 0.853 0.679 0.875 0.597 

wordanly 0.751 0.703 0.559 0.721 0.492 

readvoc 0.754 0.806 0.689 0.706 0.633 

compass 0.742 0.792 0.677 0.694 0.622 

compute 0.542 0.622 0.728 0.584 0.448 

probsolv 0.600 0.689 0.806 0.647 0.496 

spell 0.843 0.770 0.705 0.879 0.510 

sentwrit 0.667 0.609 0.558 0.695 0.403 

listnvoc 0.620 0.744 0.583 0.549 0.947 

Note. Coefficients in bold print are equal to the estimated pattern coefficients. 

Table 15 

Factor Correlations for Model 2 

 Basic_Rd Rd_Comp Math Write Listen 

Basic_Rd 1.000     

Rd_Comp 0.936 1.000    

Math 0.744 0.855 1.000   

Write 0.959 0.876 0.802 1.000  

Listen 0.655 0.785 0.616 0.580 1.000 

 

 The factor correlation matrix in Table 15 shows that the Basic Reading Subtest 

was very highly correlated with both the Reading Comprehension and the Written 

Comprehension factors. Factor correlations approaching unity are often an indication that 

a model has too many factors (Brown, 2006). High correlation between factors weakens 

the argument that the factors are measuring distinct constructs.  
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 The pattern of relationships revealed in the structure coefficients and factor 

correlations from Model 2 suggested two additional models. Model 5 is a variation on 

Model 3 in which the second order factor is a “verbal” construct that influences only the 

Basic Reading, Reading Comprehension, and Written Expression factors. The two 

remaining factors are allowed to correlate. Model 6 is a very simple two-factor (Verbal 

and Math) model, which comes from collapsing the three highly correlated factors into 

one factor.  

Neither of the two models approached acceptable fit (see Table 16). Model 5 

results included very high modification indices suggesting that the Math and Listening 

Comprehension factors should load on the second-order factor; in other words, the 

modification indices suggested Model 3. Model 6 results included several large 

modification indices suggesting correlated error variance of indicators. Such a pattern 

may be indicative of missing factors in the model (Brown, 2006). 

Table 16 

Model Fit Indices for Models 5 & 6 

Model χ2 df p RMSEA SRMR CFI TLI 

5 494.799 24 < .0001 .167 .324 .910 .866 

6 201.793 26 < .0001 .098 .034 .980 .973 

 

Though Model 2 had good fit, the model showed areas of local strain, with four 

particularly large residuals that were well outside the desired normal distribution and 

several large modification indices. In particular, the largest modification index in the 

results from Model 2 was 22.985 for the covariance of errors for the spelling and word 

recognition subtests. The content of the two subtests are clearly linked: spelling asks 
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children to recall or “sound out” how to spell words relatively quickly, and word 

recognition asks children to quickly sight-read lists of words with no context. Both 

subtests require familiarity and fluency with phonics as well as knowledge of many of the 

peculiar spelling and pronunciation rules of the English language. Thus, it was decided to 

specify Model 2A as being identical to Model 2 with the addition of estimating the 

covariance of errors between the two subtests. 

Model 2A had very good fit: χ2(17) = 23.227 (p = .113); RMSEA = .024 with a 

90% confidence interval of (0.0, 0.043); SRMR = .014; CFI = .999; TLI = .998. Model 2 

is nested under Model 2A, and the χ2-difference test indicated that Model 2A provides 

significantly better fit than Model 2 (χ2(1) = 24.243, p < .0001). Tables 17, 18, and 19 

present the pattern coefficients, structure coefficients, and factor correlations for Model 

2A. The solution’s residuals were within reasonable limits and approximately normally 

distributed. No large modification indices were included in the solution. Some interfactor 

correlations, however, were still large (see Table 19), especially among reading and 

writing related factors. Likewise, structure coefficients (see Table 18) showed high 

correlations between some indicators and factors to which they are not presumed to be 

linked. For example, the correlation between the word recognition subtest and the 

Reading Comprehension factor is greater than the pattern coefficients between the factor 

and its indicators. 
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Table 17 

Pattern coefficients for Model 2A 

 Basic_Rd Rd_Comp Math Write Listen 

wordrec 0.888 - - - - - - - - 

wordanly 0.766 - - - - - - - - 

readvoc - - 0.805 - - - - - - 

compass - - 0.793 - - - - - - 

compute - - - - 0.729 - - - - 

probsolv - - - - 0.805 - - - - 

spell - - - - - - 0.848 - - 

sentwrit - - - - - - 0.725 - - 

listnvoc - - - - - - - - 0.947 

Note. Parameters fixed at zero are represented with dashes.  
 

Table 18 

Structure Coefficients for Model 2A 

 Basic_Rd Rd_Comp Math Write Listen 

wordrec 0.887 0.844 0.678 0.817 0.593 

wordanly 0.766 0.729 0.585 0.705 0.512 

readvoc 0.767 0.805 0.689 0.717 0.633 

compass 0.754 0.793 0.678 0.705 0.623 

compute 0.557 0.623 0.729 0.601 0.449 

probsolv 0.615 0.688 0.805 0.664 0.496 

spell 0.781 0.755 0.699 0.849 0.503 

sentwrit 0.668 0.645 0.598 0.725 0.430 

listnvoc 0.633 0.744 0.583 0.561 0.947 

Note. Coefficients in bold print are equal to the estimated pattern coefficients. 
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Table 19 

Completely standardized factor correlations for Model 2A 

 Basic_Rd Rd_Comp Math Write Listen 

Basic_Rd 1.000     

Rd_Comp 0.952 1.000    

Math 0.764 0.855 1.000   

Write 0.921 0.890 0.824 1.000  

Listen 0.669 0.785 0.616 0.592 1.000 

 

In an attempt to achieve slightly more parsimonious model, and to help explain 

the high interfactor correlations, Model 3A was specified as Model 2A with a second-

order factor rather than correlated factors. Since Model 3A is more parsimonious, slightly 

degraded model fit is to be expected, but since RMSEA rewards parsimony, acceptable 

fit could still be achieved. 

The resulting model had marginal fit: χ2(22) = 86.817; p < .0001, RMSEA = .064; 

SRMR = .026; CFI = .992; TLI = .987. Although the fit statistics for this model appeared 

to be acceptable, the model showed a great deal of localized strain (Brown, 2006), with 

many large residuals and large modification indices that lacked substantive 

interpretations. In addition, the χ2-difference test indicated Model 2A fits significantly 

better than Model 3A (χ2(5) = 63.590, p < .0001). 

Model 4 was similar to Model 2 in that it resulted in a modification index 

suggesting that the error of the spelling subtest and word recognition subtest should be 

allowed to covary. Model 4A was specified in a manner analogous to Model 2A. Fit for 

Model 4A was significantly better than for Model 4, although the fit was still rather 
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marginal: χ2(23) = 117.053; p < .0001; RMSEA = .076; SRMR = .028; CFI = .989; TLI = 

.983. The solution had many large residuals and included large modification indices that 

could not be supported by substantive reasoning. Model 4A also resulted in very high 

correlation between factors, with correlation of .988 between Reading and Writing and 

correlation of .891 between Writing and Math. Model 4A is nested under Model 2A, and 

the χ2-difference test again showed that Model 2A has significantly better fit (χ2(6) = 

93.826, p < .0001). 

Cross-Validation 

Model 2A was selected as the final model that best fit the covariance matrix for 

subgroup 1. A cross-validation with subgroup 2 was performed to ensure that Model 2A 

was not merely replicating sample specific variation and to estimate final model 

parameters. The cross-validation study essentially is an investigation into whether the 

factor structure of the CIBS-II is invariant across the two independent subgroups by 

means of a multisample CFA. (For a detailed review of measurement invariance from the 

CFA perspective, see Vandenberg & Lance, 2000.) To fully cross-validate Model 2A, the 

model is simultaneously, but independently, fit to the covariance matrices of both 

subgroups. If good fit is achieved, then the estimation is repeated with a series of 

increasingly restrictive constraints. The process is illustrated here with Model 2A. 

As described above, the model was fit to both subgroups’ covariance matrices 

simultaneously. In this situation, fitting the data to the same model means that the pattern 

of factor loadings was the same for both samples as was the specification of correlated 

error variance between the word recognition and spelling subtests; however, the 

estimated parameters could differ between the subgroups’ solutions. The solution was a 
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good fit to the data (see Table 20), so invariance testing continued. Next the process was 

repeated subject to the constraint that the pattern coefficients were invariant (i.e., the ΛΛΛΛ 

matrices were identical). The fit for this model is shown in “step 2” in Table 20. Next the 

process was repeated subject to the constraint that the pattern coefficients and error 

variances were invariant across groups (i.e., the ΛΛΛΛ and ΘΘΘΘ matrices were identical). 

Finally, the process was repeated subject to the constraint that the pattern coefficients, 

error variances, and factor covariances were invariant across groups (i.e., the ΛΛΛΛ, ΘΘΘΘ, and ΦΦΦΦ 

matrices were identical). Fit indices at each step are listed in Table 20. 

Table 20 

Global Model Fit Indices for Cross-Validation 

Step 
Invariance 
Constraint χ2 df p RMSEA SRMR CFI TLI 

1 None 67.532 34 .0005 .037 .017 .998 .996 

2 ΛΛΛΛ  71.689 38 .0008 .035 .019 .998 .996 

3 ΛΛΛΛ & ΘΘΘΘ  85.920 47 .0005 .034 .021 .998 .996 

4 ΛΛΛΛ, ΘΘΘΘ, & ΦΦΦΦ  102.868 62 .0009 .031 .028 .997 .997 

 

Evaluating the extent to which these results show invariance involves the χ2-

difference test, which has been supported as an accurate method to evaluate invariance 

(French & Finch, 2006). This test checks for statistically significant decline in fit as the 

models are constrained by checking for a significant χ2-difference. Table 21 summarizes 

the results of this test across the invariance testing of Model 2A. Comparing the first, 

unconstrained model to the final, fully constrained model the χ2-difference was 35.336 

with 28 degrees of freedom, with a p-value of .1603. Thus the conclusion that Model 2A 

fits the entire CIBS-II standardization sample is supported. 
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Table 21 

χ2-Difference Tests for Cross-Validation 

Step χ2  df χ2-difference df- difference p 

1 67.532 34    

2 71.689 38 4.157 4 0.385 

3 85.920 47 14.231 9 0.114 

4 102.868 62 16.948 15 0.322 

 

Final parameters for the model are taken from the simultaneous fit of both 

subgroups to the model in the final step of cross-validation (see Tables 22–24). The final 

model parameters suffer the same interpretive problems as do the initial parameters for 

Model 2A (Tables 17–19). In particular, correlations are large among the reading and 

writing factors (.952) and moderately large among the math, reading, and writing factors 

(.770, .805, and .846). In addition, the structure coefficients (see Table 23) show high 

correlation of the word recognition subtest with factors to which it is presumably not 

linked. The word recognition subtest is modeled as linked only to the Basic Reading 

factor, but its correlation (i.e., structure coefficient) with the Reading Comprehension 

factor is higher than the two indicators which are modeled as linked to that factor. The 

Written Expression factor also has multiple indicators with high structure coefficients, 

including the word recognition subtest. However, in specifying a CFA model in which 

the word recognition subtest was linked to more than one factor (i.e., it was cross-

loaded), the estimated factor coefficients were not significantly different from zero. 
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Table 22 

Pattern coefficients for Model 2A 

 Basic_Rd Rd_Comp Math Write Listen 

wordrec 0.893 - - - - - - - - 

wordanly 0.780 - - - - - - - - 

readvoc - - 0.804 - - - - - - 

compass - - 0.812 - - - - - - 

compute - - - - 0.757 - - - - 

probsolv - - - - 0.816 - - - - 

spell - - - - - - 0.859 - - 

sentwrit - - - - - - 0.703 - - 

listnvoc - - - - - - - - 0.946 

Note. Parameters fixed at zero are represented with dashes.  
 

Table 23 

Structure Coefficients for Model 2A 

 Basic_Rd Rd_Comp Math Write Listen 

wordrec 0.891 0.848 0.686 0.848 0.587 

wordanly 0.780 0.742 0.600 0.742 0.513 

readvoc 0.765 0.804 0.680 0.725 0.621 

compass 0.772 0.811 0.686 0.732 0.627 

compute 0.583 0.640 0.756 0.609 0.464 

probsolv 0.628 0.690 0.816 0.657 0.500 

spell 0.817 0.775 0.691 0.858 0.534 

sentwrit 0.669 0.634 0.566 0.703 0.437 

listnvoc 0.623 0.730 0.580 0.589 0.946 

Note. Coefficients in bold print are equal (within rounding error) to the estimated pattern 
coefficients. Coefficients in italic print are discussed in Chapter 5. 
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Table 24 

Completely standardized factor correlations for Model 2A 

 Basic_Rd Rd_Comp Math Write Listen 

Basic_Rd 1.000     

Rd_Comp 0.952 1.000    

Math 0.770 0.846 1.000   

Write 0.952 0.902 0.805 1.000  

Listen 0.659 0.772 0.613 0.623 1.000 

 

Summary 

 The dimensionality study used an exploratory approach to assess the essential 

unidimensionality of the CIBS-II subtests. The DIMTEST results led to the rejection of 

the null hypothesis of essential unidimensionality for five of the nine subtests. The null 

hypothesis could not be rejected for the other four subtests.  

 The CFA study showed support for the composite score structure proposed by the 

test’s author. By allowing the error covariance between the word recognition and spelling 

subtests to be estimated, very good model fit was established. This good fit was cross-

validated across an independent random subgroup of the data. At the same time, structure 

coefficients and interfactor correlations hinder the interpretation of the model and may 

indicate the presence of complex interactions among the subtests and latent constructs. 

 Although the dimensionality analysis and the confirmatory factor analysis of these 

subtest scores both involved evidence regarding the internal structure of the CIBS-II 

scores, no formal link between the two forms of analyses was made. The relationship 

between these two analyses and implications for interpretation of CIBS-II scores is 

explored in the following chapter. 
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CHAPTER FIVE 

DISCUSSION 

 

In this chapter, results from the dimensionality study and the confirmatory factor 

analysis (CFA) study are discussed separately, and then the results are woven together to 

draw overall conclusions from the study.  

Dimensionality/DIMTEST 

DIMTEST uses conditional covariances to test the null hypothesis of essential 

unidimensionality of a set of test scores. The concept of essential unidimensionality was 

developed to acknowledge the fact that pure unidimensionality is an extremely strong 

assumption. An essentially unidimensional test can be considered as measuring one major 

dimension even though other unimportant and uninterpretable minor dimensions may be 

present (Nandakumar, 1991). 

In expressing the composite score structure of the CIBS-II, the test’s author 

implies that the subtests have a particular dimensional structure. That is, each subtest 

contributes to exactly one composite score, with the implication that each subtest 

measures one dimension. The CFA study of the composite score structure can provide 

evidence to support or refute this interpretation of the subtest scores, but such a study 

fails to investigate the underlying dimensionality of the subtests. 

The present study used DIMTEST to assess the dimensionality of the CIBS-II 

subtests. A randomly selected subgroup of one-third of the respondents was used to select 

the assessment test (AT) for each subtest. The AT sets were selected via a combination of 

conditional covariance-based cluster analysis and the DETECT index. This procedure is 
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designed to select a set of items that are most likely to display dimensional 

distinctiveness. The other two-thirds of the respondents were used in the actual 

DIMTEST analysis of the test scores, in which the covariances of pairs of AT items, 

conditioned on examinee ability as measured via the items not included in AT, are used 

to calculate the DIMTEST statistic.  

The null hypothesis of essential unidimensionality was rejected for five subtests: 

word recognition, word analysis, sentence writing, reading vocabulary comprehension, 

and listening vocabulary comprehension. The null hypothesis was not rejected for the 

four remaining subtests: comprehends passages, computation, problem solving, and 

spelling. The standardization sample yields evidence that these four subtests are 

essentially unidimensional. For the other five subtests, the DIMTEST analysis does not 

yield specific information about their dimensional structure. DIMTEST simply provides a 

statistical test to indicate that these subtests should not be assumed to be essentially 

unidimensional. These results indicate that each of these subtests measures at least two 

dominant dimensions; the exact number of dimensions cannot be determined from this 

information. 

It is worth noting that two subtests with content commonly used to exemplify 

multidimensionality were among the four subtests that appear to be essentially 

unidimensional. Tests of mathematical problem solving are often used as examples of 

multidimensional tests (e.g., Zhang & Stout, 1999) because such tests measure can 

measure multiple dimensions, for example: examinees’ ability to read and comprehend a 

problem, reason mathematically about that problem, and successfully perform 

computations necessary to correctly solve the problem. Likewise, tests based on 
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comprehension of short text passages (e.g., the comprehends passages subtest; Zhang & 

Stout, 1999) are common among examples of multidimensional tests because the content 

of a text passage can affect how an examinee interacts with the passage. Thus, a passage 

based on historical events may measure reading comprehension and understanding of (or 

interest in) history, while a passage based on nature may measure reading comprehension 

and understanding of (or interest in) environmental science. 

Among the subtests for which the null hypothesis of unidimensionality was 

rejected are some rather complex subtests. For example, the word analysis subtest 

includes items that require the examinee to indicate whether two words read by the test 

administrator sound exactly the same (e.g., “Listen carefully to these words: boy-toy. Are 

they the same?”); identify sounds heard in words read aloud by the test administrator 

(e.g., “I want you to listen carefully and then tell me the first letter you hear in the 

word.”); read aloud words and nonsense words to sample phonemic awareness (e.g., the 

examinee is asked to read aloud such lists of words as “bush, push, fush”); and divide 

written words into syllables. The reading and listening vocabulary comprehension 

subtests involve reading or listening to sets of words and identifying the word that does 

not belong in each list (e.g., “Tell me the word that does not belong: circulate, orbit, 

rotate, recover.”). The sentence writing subtest requires examinees to understand word 

meanings and to apply them within the context of English grammar and sentence 

structure when, for example, they are asked to use the words “captain, complain, terrible, 

and dangerous” in one complete sentence. Although scoring of the sentences was 

intentionally generous to examinees (e.g., correct spelling was not required, and rules of 
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grammar and punctuation were not stringently enforced), constructing sentences is a 

complex activity requiring lexical and syntactical knowledge of the English language. 

It is much more difficult, however, to substantively interpret the results for the 

word recognition subtest, which was identified as multidimensional. In this subtest 

children are asked to sight-read lists of words. The lists are devoid of any context and 

were arranged by increasing difficulty (i.e., grade level). Each word was considered an 

item and was scored correct if the child correctly pronounced the word and incorrect if 

the child mispronounced, misread, or was excessively slow in “sounding out” the word. 

One possible source of multidimensionality could arise from words of the same formal 

difficulty level having a different level of familiarity for children. For example, “play,” 

“me,” and “small” were at the same grade level yet easier to sound out than “two” and 

“what.” At a higher grade level, “attitude” and “diminish” are likely more familiar to 

most sixth graders, and easier to sound out, compared to “plateau.” 

 The lack of essential unidimensionality in five of the nine subtests is a threat to 

the interpretability of the composite score structure of the CIBS-II. The five subtests in 

question appear to measure more than one important dimension, but in the score 

structure, they are each interpreted as contributing to exactly one composite score. Since 

these subtests appear to be multidimensional, the meanings of the subtest scores are not 

clear. Is an individual’s high score on a given subtest a result of the individual’s ability 

with respect to the targeted dimension or another unknown dimension? What can be 

inferred about the ability of two individuals with the same scores on a subtest that is not 

unidimensional? These questions cannot be answered without much deeper analysis of 
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the dimensional structure of the subtest in question, but they could emphasize the 

difficulties associated with interpreting scores from multidimensional subtests. 

Internal Structure/CFA 

 This study sought evidence in support of the composite score interpretation of the 

nine CIBS-II subtests. Using the CFA framework, the CIBS-II subtest scores from the 

standardization sample were fit to the model implied by the composite score structure as 

well as to other theoretically plausible rival models. The sample was randomly split in 

half to allow one subgroup to be used to test and respecify models while holding the 

second subgroup in reserve for cross-validation of the best-fitting model. 

Model 1 was a one-factor model. Support for this model would imply that all 

CIBS-II subtest scores contribute to a single “general achievement” factor. Such a model 

would serve as support for the use of a single composite score from the nine subtests. 

Model 1, however, did not fit the data, which suggests that the nine subtests measure 

more than one general construct. 

Model 2 was a reflection of the composite score structure advocated by the test’s 

author, and it fit the data well. By modifying the model to estimate the covariance of 

errors in the word recognition and spelling subtests (which created Model 2A), the model 

fit was improved to a point that further modifications could no longer be reasonably 

proposed.  

Statistical and substantive justification can be made for allowing estimation of 

error covariance. The error covariance adds to the model common variance between two 

indicators that could otherwise only be accounted for in the covariance of their respective 

factors. In Model 2, the structure coefficient between the spelling subtest and the Basic 
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Reading factor was .843, which indicates a relationship between the spelling subtest and 

the Basic Reading factor. In addition, the highest modification index from Model 2 

suggested estimating the error covariance rather than constraining it to zero. 

In addition to these statistical indications that the error covariance should be 

estimated, an argument can be made on substantive grounds that these two subtests share 

variance that should be considered in the model. Although being able to spell words may 

be influenced primarily by a Written Expression factor and reading lists of words out of 

context may be influenced primarily by a Basic Reading factor, the two skills are both 

related to familiarity with common words and both require fluency with phonics 

concepts. 

Other models considered as rivals to Model 2 did not result in acceptable fit. Of 

most interest was modeling the interfactor correlations in Models 2 and 2A as a second 

order factor (Models 3 and 3A, respectively). However, both of these models degraded fit 

significantly leaving Model 2A as the favored model. 

In Models 2 and 2A, the listening vocabulary subtest is the only indicator linked 

to the Listening Comprehension factor. Single-indicator factors create technical and 

interpretive challenges. The technical challenge can be surmounted through fixing 

parameters rather than estimating them. In Model 2 and 2A, the parameter coefficient 

was fixed to 1.0 and the error variance was fixed to 0.545.  

The interpretive challenge centers on considering an individual variable as an 

indicator of a latent variable; latent variables are normally assessed conceived of as 

reflecting the common variance of multiple indicators (Thompson, 2004). The 

alternatives to interpreting the listening vocabulary subtest as the single indicator for a 
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latent factor are to (a) add more indicators for the latent factor in question, (b) use the 

variable as an indicator for one of the other factors, or (c) drop the variable and factor 

from the model.  The first alternative is not an option because the present study can only 

involve the existing subtests. The second and third alternatives are attractive because they 

would result in models that involve a more familiar interpretation, but the solution for 

Model 2A supports the option of rejecting both alternatives. 

It is not known how the test’s author derived the composite score structure for the 

subtests, but the structure coefficients provide support for keeping the listening 

vocabulary subtest separate from other factors. The listening vocabulary subtest had a 

high structure coefficient on the Reading Comprehension factor, which can be explained 

by the importance of an examinee’s vocabulary to both the Reading Comprehension 

factor and the listening vocabulary subtest. However, the Listening Comprehension factor 

had moderate structure coefficients with the other subtests, which suggests that this factor 

stands apart from the other subtests. The listening vocabulary subtest seems to be 

assessing something distinct from the other factors, its correlation with Reading 

Comprehension notwithstanding. 

The listening vocabulary subtest was found to be multidimensional in the 

DIMTEST analysis, yet this subtest does not seem to be as intertwined with other 

subtests and factors as other subtests identified as multidimensional. If the subtest could 

be clustered into a small number of unidimensional parcels, these parcels might be useful 

as multiple indicators of the latent Listening Comprehension factor. However, it is 

possible that such parcels would measure dimensions too disparate to be common 

indicators or that unidimensional parcels do not exist.  
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Linking Dimensionality and Internal Structure 

The dimensionality study yields information that can be helpful in understanding 

the parameters in the model identified as the favored model from the CFA investigation 

(Model 2A). Five subtests (word recognition, word analysis, sentence writing, reading 

vocabulary comprehension, and listening vocabulary comprehension) were identified as 

being not essentially unidimensional. All the factor models specified in this study 

involved an assumption of unidimensionality: each subtest was specified as being 

influenced by exactly one factor. Multidimensional measurement is specified in a factor 

model by estimating pattern coefficients (i.e., λs) from two (or more) factors to one 

indicator. That is, a single indicator would be linked to (or more properly, influenced by) 

multiple factors. Specifying multidimensional measurement in this manner is referred to 

as cross-loading indicators. 

Fitting data that is not unidimensional to a model that is based on the assumption 

of unidimensional indicators should manifest in lack of fit. Modification indices should 

suggest cross-loading indicators to multiple factors or allowing error covariances to be 

estimated. Given what is known about the dimensionality of the CIBS-II subtests, the fit 

of Model 2A is remarkably good. The multidimensional nature of the five subtests did 

not cause severe enough misfit to cause the proposed composite score structure to be 

rejected. However, the effect of the multidimensional nature of some subtests is revealed 

in the interfactor correlations and structure coefficients in Model 2A. 

High correlations between factors can suggest overlap in the latent constructs 

measured in the model. A common rule of thumb states that factor correlation exceeding 

.85 may indicate the presence of too many factors in the model (Brown, 2006). However, 
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as the results in Chapter 4 indicate, the five factor model for CIBS-II model appears to be 

optimal; models with fewer factors had unacceptable fit indices. 

The structure coefficients can help explain this apparent paradox. In a model with 

unidimensional measurement and correlated factors, structure coefficients represent the 

correlation between an indicator and a factor. The word recognition subtest had very high 

structure coefficients with the Basic Reading, Reading Comprehension, and Written 

Expression factors (see the italicized coefficients in Table 23). The same pattern of very 

high structure coefficients was seen with the word analysis, reading vocabulary, and 

spelling subtests (see Table 24). The listening vocabulary subtest had a high structure 

coefficient with the Reading Comprehension factor. Four of the subtests mentioned here 

are among those identified as being not essentially unidimensional. The multidimensional 

nature of these subtests is apparently evident in the high correlations with other factors. 

The nature of these results suggests that the composite score structure put forth by the 

test’s author is a valid interpretation of the scores (i.e., the internal structure supports 

such an interpretation); however, the details of the model hint that this composite score 

structure may be a simpler model than what one would find were a full exploratory study 

mounted, including full consideration of the content of the subtests and a deeper 

investigation of the dimensionality of the subtests (e.g., what is the extent of the 

multidimensionality among the five identified subtests?).   

A strikingly similar pattern of results was discovered in a CFA validity study of 

the TerraNova achievement test system (CTB/McGraw Hill, 1997): although model fit 

was adequate, very high interfactor correlations and high structure coefficients raised 

questions about the interpretability of the three-factor structure (Stevens & Zvoch, 1997). 
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A CFA study of the KeyMath Revised Normative Update (Connolly, 1998) also showed 

reasonable model fit for the three-factor structure advocated by the test’s author, but high 

interfactor correlations led the researchers to perform an exploratory study that gave 

support for a one-factor model (Williams et al., 2007). Analyses of the dimensionality of 

the individual subtests were not performed in these other studies, but researchers 

speculate about the presence of “common, nonachievement features of performance such 

as decoding or problem solving” (Stevens & Zvock, 1997, p. 987). Such a common 

construct would be very likely to manifest in each subtest as a secondary dimension. The 

discovery of a similar pattern of results in the CIBS-II subtests may suggest a need for a 

broader investigation into the latent structures of achievement test results.    

It is not the purpose of the current study to deeply examine the content of the 

subtests. Likewise, it not the purpose of this study to propose a restructuring of the score 

structure. This study intends to describe the nature of the scores and investigate whether 

evidence supports the proposed interpretation (i.e., the nine subtests can be interpreted as 

measuring five broad areas). The proposed structure, as interpreted in Model 2A fits 

better than any other plausible model that assumes unidimensional subtests. 

Conclusion 

 The results of this study show support for the composite score structure for CIBS-

II subtest scores. Questions remain as to whether a more complex model, taking into 

account the multidimensional structure of individual subtests, would produce a more 

meaningful interpretation, but the present study produced evidence that the composite 

score structure is a good fit to the standardization sample in an absolute sense (i.e., the 
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model fits) and that the composite score structure is a better fit than other plausible 

models. 

 The support for the composite score model was weakened slightly by evidence 

that several subtests are multidimensional. No attempt was made to identify the 

dimensional structure of the individual subtests, but the high structure coefficients and 

high interfactor correlations may indicate that the content of the subtests overlaps to a 

higher degree than intended or that the subtests measure some unidentified common 

construct. 

 In the unified view of validity, validation is an ongoing process. In this model of 

validity, it is not a test or a test’s scores that are validated; it is a proposed interpretation 

of the scores that is validated (AERA et al., 1999; Kane, 2006). The Standards for 

Educational and Psychological Testing (AERA et al., 1999) list five common sources of 

evidence: evidence based on (a) test content, (b) response processes, (c) internal 

structure, (d) relations to other variables, and (e) consequences of testing. Validating one 

proposed interpretation of the scores might involve gathering multiple sources of 

evidence. Other interpretations might demand different sources of evidence. 

The present study provides evidence based on the internal structure of the test, 

which supports the composite score structure. However, the evidence from this study 

could also be used to support a more complex interpretation involving other as yet 

unidentified constructs. Evidence based on test content and response processes might be 

used to help build a case for such an interpretation. 

 Other evidence could be collected to add to the present validation investigation. 

The construct model of validity relies on the statement of an underlying theory (Messick, 
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1989). An explication of the theoretical underpinnings of the individual subtests and the 

manner in which they were combined into composite scores would amplify the evidence 

provided in the present study. Such an analysis would also provide content-based 

evidence of the validity of the composite score structure. Similarly, a confirmatory study 

to more thoroughly investigate the dimensionality of the subtests, including content-

based analysis of clusters identified by CCPROX/HAC, would provide additional 

evidence of the dimensional structure of the subtests individually and of the CIBS-II as a 

whole. 

 The present study addresses a small portion of what should be an ongoing process 

to validate the intended uses of the CIBS-II. The overall goal of validation is to evaluate 

“the proposed interpretations and uses of measurements” (Kane, 2006, p. 59). Inherent is 

such an evaluation is a consideration of the consequences of testing and of the proposed 

interpretations of scores. A proposed interpretation or use of scores has potential 

consequences. The nature of those potential consequences (e.g., high stakes vs. low 

stakes) affects the evaluation of whether the scores support such a use or interpretation. 

 The explicit consideration of the consequences of test use as a part of a validation 

is generally accepted as part of the unified view of validity (e.g., AERA et al., 1999; 

Messick, 1989; Kane, 2006), but it is not a universally held position (e.g., Cizek et al., 

2008). The argument seems to center on whether test developers should (or indeed 

whether they are able to) anticipate the possible uses of test scores. In addition, 

consequential validity evidence cannot be gathered until a test is in use, which means no 

test can be adequately validated before it is published if the explicit consideration of 

consequential validity is required as a part of validation (Cizek et al., 2008). A middle 
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ground might be to recognize that consideration of the consequences of proposed 

interpretations should be involved in the development of any instrument (i.e., it is a 

responsibility of the test developer), and consequences of novel uses of an instrument 

should be considered by test users (Nichols & Williams, 2009). 

 Such arguments will likely occupy validity theorists for many years to come. In 

the meantime, practitioners study what they can. Consequences of the CIBS-II cannot 

currently be known since the test is planned for release as this study is being completed. 

However, some potential uses can be considered, and the evidence from this study can 

help evaluate the suitability of CIBS-II scores for those uses. For example, composite 

scores from the CIBS-II appear to be suitable for such low-stakes uses as monitoring 

student progress, identifying areas of strength and weakness, or setting learning goals. 

However, questions about the possible existence of more complex interpretations of 

subtest scores render the composite score structure unsuitable for such high-stakes uses as 

qualifying students for placement in special education courses or for accountability 

reporting. 

 Historically, the CIBS test series has received little attention from researchers 

investigating the validity of its scores. The research reported here represents a change 

from that historical pattern. This research, follow-up studies to this work, and the studies 

reported in the test manual (French & Glascoe, 2009) represent the kind of accumulation 

of evidence that characterizes modern notions of test validation. 
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APPENDIX 
 

Table of Items Chosen for Final AT Sets Used in DIMTEST Analysis 

 

Subtest Items in Final AT Set 

Word Recognition  1 9 10 16 17 22 23 27 32 33 44 47 48 52 

 54 56 57 58 59 61 65 67 68 70 72 75 77 78 

 79 84 85 90 93 94 96        

               

Word Analysis 8 32 33 35 36 37 38 39 40 41 42 43 44 45 

 46 47 48            

               

Reading Vocabulary 7 8 10 12 14 18 19 24       

               

Comprehends Passages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

 15 16 17 18           

               

Computation 5 6 7 8 9 10 11 12 13 14 16 18   

               

Problem Solving 3 4 5 6 7 8 9 10       

               

Spelling 16 17 18 21 24 25 26 27 29 30 32 34 38  

               

Sentence Writing 1 2 3 4           

               

Listening Vocabulary 6 7 8 9 11 12 15 16       

 
 
 


