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Abstract

This paper presents a neural model of similarity perception in identification tasks. It is
based on self-or ganizing maps and population coding and is examined through five different
identification experiments. Simulating an identification task, the neural model generates a
confusion matrix that can be compared directly with that of human subjects. The model
achieves a fairly accurate match with the pertaining experimental data both during training
and thereafter. To achieve this fit, we find that the entire activity in the network should
decline while lear ning the identification task, and that the population encoding of the specific
stimuli should become sparse as the network organizes. Our results thus suggest that a
self-organizing neural model employing population coding can account for identification

processing, while suggesting computational constraints on the underlying cortical networks.

" To whom corresponcence shoud be aldressed.
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INTRODUCTION

Smilarity is a basic concept in cogritive psychoogy which is utilized to explore the
principles of perception. Theories abou similarity aim at explaining when people
identify or judge two dfferent stimuli as related (e.g: Ashby & Perrin, 1988 Ashby &
Lee 199]). Experimentally, smilarity between oljedsis measured using dfferent kinds
of stimuli and moddliti es, via two fundamental methods. The first is the dired method
where subjeds are asked to explicitly estimate the level of similarity between two
objeds. The secnd method is the indired one, where subjeds are aked to identify
various gimuli. This method is motivated by the basic sssumption that two smilar
objeds tend to be mnfused more often. In this paper we focus on modeling simil arity
experiments performed with the indirea method, which is less dependent on attentional
levels. Indired similarity experiments are dso performed in animals, making relevant
neurophysiologicd data realily avail able.

In atypicd indired similarity experiment, the stimuli are presented to the subjed
in randam order. The subjed’ s task is to identify ead stimulus by its srial number, and
report it as the subjed resporse. In case of error in identificaion, the experimenter
informs the subjed abou the @rred answer. The data thus obtained is typicdly
represented in a two dmensiona square confusion matrix. A cdl in row i and column j
of the cmnfusion matrix reports the number of times the subjed has erroneoudly identified
stimulus i as gimulus j, and the number of the wrred resporses is reported on the
diagoral. Similarity experiments can be cdegorized by three magjor charaderistics: the
modaliti es involved, the fedures that construct the stimuli, and the dimension (the

number of feaures) of the stimuli. The similarity experiments modeled in this paper, a
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representative set of smilarity experiments with smple stimuli, are dassfied
acordingly in Table 1.

Table 1. The five similarity experiments modeled in this paper, classfied by their major

charaderistics.

Experiment No of Stimuli  Modality Features Dimensions
Shepard 1958 9 Visud Brightness Saturation 2
Hodge 1962 8 Auditory Pitch, Duration, Intensity 3
Kornbrot 1978 6 Auditory Intensity 1
Nosofsky 1987 12 Visud Brightness Saturation 2
Nosofsky 1989 16 Visual Size Rotation 2

The theoreticd analysis of similarity experiments has been traditionally based on
metric models. These models represent stimuli as points in a @wordinate spacesuch that
the observed similarities between items are related to the metric distances between the
respedive points. That is, the more similar the stimuli are perceved, the doser their
representative points are in space These multidimensional metric representations can be
generated by applying multidimensiona scding (MDS) on the @nfusion matrix data
reveding the perceived stimuli as pointsin areduced dmensional space However, in a
typicd identificaion task, not all the entries of the diagoral cdls are equa and the
confusion matrix is not symmetric. That is, subjeds tend to identify some stimuli better
than athers and stimulus i may be more @nfused with stimulus j than vice versa. Thus,
the metric representation d stimuli in space has classcdly been complemented by
asymmetric processes invalving two main approadies (for more extensive review see
Nosofsky, 1992. The first is the deterministic approad in which ead stimulus (objed)

IS represented as a point in a multidimensional space & in the traditional view, but
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employing an additional set of choice dedsion rules. An important representative of this
approach is the Multidimensiond Scaling (MDS) choice model (Shepard 1957 Luce
1963, which has been able to acourt for both the asymmetric and the unequal self
identification charaderistics of the data. According to this model, the probability that

stimuli i i sidentified as gimuli j i san oucome of the choicemodel dedsionrule:

. ) ‘03’7-@

3

where 1. is the smilarity between stimulus i and stimulus j, a deaeaing monaonic

function (exporential or Gaussan) of the distancein perceptual spacebetween stimulus i
and stimulus j. b denotes bias parameters that are ssociated with ead stimulus. The
model free parameters are the bias and the locaion d ead stimulus in the
multi-dimensions perceptua space Thus, the anount of free parameters sdes linealy
with the number of stimuli and dmensions of the perceptual space

In the seaond probalkili stic approad, ead stimulus is represented as a statisticd
ensemble of paints. An important representative of this approad is General Recogrition
Theory (GRT) (Ashby & Townsend, 1986 Ashby & Perrin, 1989. GRT is based onthe
asumption that noise is an inherent comporent in the perceptual system. Hence, aaoss
trias, the repeaed presentation d the same stimulus gives rise to a probabilistic
distribution around the expeded values of stimulus representations. In an identification
task, GRT asaumes the subjed divides the perceptual spaceinto regions. In ead tria the
subjed determines within which deasion boundaies the stimulus representation falls,
and this leals to the asociated resporse. GRT acmurts for the asymmetric nature of the
data by alotting regions of different sizes to the representation d different stimuli. In

order to fit the psychologicd data the model free parameters are the dedsion boundries



Similarity in Perception: A window to brain development 4

for ead stimulus and its locaion in the multi-dimensions perceptual space These
approaches provide an excdlent fit for the empiricd data, but do nd acour for the
representation o similarity in neura terms. Moreover, these gproacies embody a very
large number of parameters (afew tens) that shoud be explicitly set to corredly fit the
data in a spedfic manner for eat dfferent experiment. As will become evident, the
model propased in this paper points to an interesting conredion between the MDS and
GRT models of identification.

Severa attempts have been previously made to identify the neural correlates of
similarity perception in the brain (Edelman, 1995 1997 Tadashi et a., 1998. A few
reseachers have performed experiments of oda identificaionin rats (Youngentob et al.,
199Q Kent et a., 1995. They analyzed the perceptual odar stimulus gaceby applying
MDS analysis to a confusion matrix of five different odar stimuli, which resulted in a
reduced 2-dimensional space Examining the neural adivity of the olfadory mucosa
during oda inhalation, they foundthat ead odaant had a unique "hat spot” region d
maximum sensitivity. A y preserving mapping between the position d the @rrespondng
odarant in the reduced 2-dimensional psychophysicd odar space ad the mucosa locdion
of these "hot spats’ was identified. Wang et al. (1996 have investigated the functional
organizdion d objed recogntion, usng ogicd imaging in inferotemporal cortex, again
finding aregiona clustering d cdls respondng to smilar feaures. Youngand Y amane
(1992 have shown that the encoding d the visual perceptual spaceof familiar human
faces in the inferotemporal cortex of monkeys is popuation besed. This popuation
encoding is arse and is related to the spatia properties of face stimuli in the
correspondng MDS psychophysicd space Put together, these findings suppat the

naotion that the processng in some orticd regions engaged in perception employs both a
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topdogicd mapping and popuiation coding. A model relating ketween topdogicd
mapping and popuiation coding hes been previoudy suggested by Guenther & Gjgja,
(1996 in oder to provide an explanation for the well known phenomenon d the
perceptual magret effed (Kuhl, 1997). While Guenther & Gjga's, work models a
different set of data, their model of stimulus discriminability has a dose relation to
similarity perception, inferring perceptual stimulus relations from map adivities. Their
model, as in ou current paper, suggests that the perceptual effeds observed in the
psychologicd experiments arise & a natural consequence of the formation and the
organizaion d the neural map.

The observation d Kent et a. (1999 that there is atopdogicd mapping from the
perceptual similarity spaceto its representation in the olfadory mocusa, obviously raises
the question d the possble neura medhanisms underlying this phenomenon A natural
candidate is the Self-Organizing Map (SOM) algorithm (Kohoren, 1982, which has
been shown (seeKaski 1997for areview) to be strondy related to the MDS procedure,
both maintaining a structural topdogicd mapping. The SOM algorithm, to be described
in detail in the next sedion, has an explicit neural level redizaion. In this paper, we
study a neura model of similarity perception that is based on an SOM topdogicd
mapping and popuiation coding. As will be seen, the quest to model the psychophysicd
data of similarity perception suggests useful constraints on the pertaining
neurophysiologicd level. The next sedion povides an owerview of the model and ou
simulation experiments. The Results dion compares the computational results with the
human data. The last sedion dscusses brain arganizaion and development in lieu of our

results.
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THE MODEL

Model Overview
The model is based on a self-organizing reural network (Kohoren, 1982 1989 that is
implemented in computer simulations. In order to describe the model in a cncrete
fashion, we refer to a typicd indired smilarity experiment performed by Shepard
(1959. This well known experiment used 9 stimuli of distinct red colored chips of
uniform size The mlored chips, as edfied by the system of Munsell, were of a
constant hue, but varied in brightness(4 levels) and saturation (4 levels of chroma). Each
chip was labeled by a number from “1” to “9". After a short period d training, 36
subjeds were asked to identify the exposed colored chips by their labels. In case of an
identification error, the experimenter provided the subjed with the @rred answer. Each
of the 36 subjeds was exposed to a random sequence of 200 successve dip
identification trials and their respornses were assembled in atypicad 9X9 confusion matrix
(Table 2).

The model iscomposed of anetwork of laterally interading reurons arranged in a
two-dimensional array, encoding dstinct feaures of the inpu stimuli. The neurons are

fully conreded to a wmmon layer of inpu neurons as portrayed in Figure 1.
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Input Neurons
4@ Feature 1
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Input Fibers

X Input Vector

w;: Synaptic Weight Vector
of neuron r

Ra Radius of Activity

Ry Radius of Learning

Winner neuron

Figure 1. Schematic Model description. The neural model is composed of a two-dimensional array

of neurons fully conneded to a ommon source of input fibers transmitting the input stimuli.

To smulate this experiment, the neural network was presented with 2-dimensional inpu
fedure vedors representing the 9 stimuli of the original experiment. The value of ead o
the two comporents of an inpu prototype vedor was determined by the correspondng
fedure value (i.e., brightnessand saturation) of the stimulusit represents. To generate an
inpu vedor a randam noise term is added to ead ore of the prototype vedor
comporents representing an external noisy environment.

When an inpu vedor is presented and pocesed by the network, the
identification resporse of the neura modd can be “read” from its adivity state. The
network resporses to the representation d a set of stimuli are acamulated in a confusion
matrix in a standard manner. The readou of the output data is based on popuation
coding (Georgopouos et al., 19821984). In contrast with the Winner-Take-All approad,
popuation coding is a method that determines the locaion d a resporse vedor in the

network’s “perceptual” space & a function d the entire network’s adivity and nd the
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result of a single neuron's adivity. The model’s operation consists of two conceptually
distinct phases. The training phase, during which the network gradually self-organizes,
extrading the regularities of the inpu stimuli, and the identification (performance)
phase, during which the organized network can succesdully simulate identification
tasks. Stimulus identificaion may also be performed duing the training prese, to

simulate identification tasks performed ealy in the leaning process

The Training Phase

In the training phase, the ensemble of inpu vedors presented to the network is generated
acording to the following process A prototype feaure vedor representing ore of the
stimuli in the identificalion experiment is randaomly seleded. Then, to generate an inpu
vedor x, anoiseterm isadded to ead of its n comporents representing an external noisy
environment (typicaly n=2 or 3, the noise is normally distributed with zero mean, fixed
variance and zero covariance). The magnitude of all the input vedorsis kept normali zed,
thus eliminating a scding bas (see Appendix | for detalls). The presentation d an input
vedor gives rise to excitation d neurons in the network array (see Figure 1). The
resporse of neuronr is edfied by its n-dimensional synaptic weight vedor w, and is
equal to the dot product of xW, (Kohoren, 1989 1993. In resporse to a given inpu
stimulus, the most adive neuronin the lattice (for which xiW_ is maximal) is defined as

the winner neuron, s. Its surroundng retwork adivity is moduated by a Gaussan kernel

function o (x) centered on reuron s, whaose variance RA2 controls the radius of

activation around the winner (n, (r) is largest at r=s and dedines monaonicaly to

zero with increasing dstance between the s and the r’ th neuron),
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The adivity m, of neuronr is defined as

@n, = (x Ow,) Une (x).

During training, the network self-organizes by modifying the synaptic weights of the

neurons in the winner’'s surroundngs by

@ w, " = w™ + g On, () O(z - wo)

_ HIk-sH
® n, () R R

where & (r) is a Gausgan function whose variance R ? (radius of learning) controls

the region d synaptic modification around the winner, and € is a learning rate that
governsthe rate of synaptic modificaion.

For the map to converge, R and € must deaease over time (in ou simulations
they are deaeased in a linea rate). The first, rapid, stage of map organization is
conventionally termed spread ou, and is charaderized by dobal synaptic changes. The
seoond, fine tuning phase, occurs after the topdogicd ordering d the map is establi shed
and is charaderized by dow locd synaptic changes that permit the cnwvergence of the

network’s g/naptic matrix .



Similarity in Perception: A window to brain development 10

The ldentification Phase

In a smulated identification task, the network is exposed to inpu stimuli vedors
generated as in training phese. The synaptic matrix generated previoudy during the
training phese is kept fixed duing this phase. The output of the network given an inpu
vedor is determined via the popuation coding method (Georgopouos et a., 19821984,

i.e, by the vedorial sum of the neurons’ synaptic dficades weighted bytheir adivity

zj_l m, Ow,
®vp = —

2o ™

where N is the total number of neurons in the network array, w._is the synaptic weight
vedor of neuronr and m isits adivity. The vedorial sum is made on the entire network
and thus, the popuation vedor is an average outcome of the network’s adivity resporse
to the inpu stimulus and its reading induces a transformation d the inpu vedors to a
new location in feaure space The fina output vedor is determined by adding a normal
distribution nase term to this new locaion, smulating an internal noise fador in human
processng (the noise levels, bath internal and external, are fixed parameters and do no
vary in time, Figure 2a). The model’s identification resporse is determined by finding
the prototype popuation vedor' closest to the output vedor (i.e., in which dedsion
boundiriesit fallsin the network’ s perceptua map, Figure 2b, see éso Appendix Il). The
identification resporses over many inpu stimuli are then summed up in a @nfusion

matrix in a standard manner.

' A prototype popuation vedor is a prototype vedor that has been transformed using a popuation coding

method
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To smulate the known phenomena that humans tend to guess answers at the
initial stages of leaning to perform similarity psychoogy tasks (Shepard, 1958, a
“guessng’ parameter isintroduced. This parameter, foll owing Nosofsky’s model (1987)
introduces a randam seledion d the network resporse & some smal fradion d the
leaning trials. At the ealy stages of leaning the probability for the network to guessa
resporse is 13.5%, deaeasing monaonicdly as the network leans to 0.5% at the end o
the training phese, as in Nosofsky (1987. These dynamics governing the “guessng’

parameter are kept fixed throughou our smulations.
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RESULTS

This wdion reports the model performance on four different identificaion tasks. We
begin by analyzing the identification results of mature fully-trained networks, comparing
between the confusion matrices generated by the model and the @rrespondng confusion

matrices of human subjeds. Next, we turn bad to study the training phese in depth, by
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investigating the performance of the model asit evolves and self-organizes whil e training

on the dynamic Munsell’s 12 color experiment (Nosofsky, 1987).

I dentification
Thefirst experiment analyzed is the simil arity experiment of Shepard (1958 seeprevious
sedion 2.1) which used 9 different Munsell’s red colored chips with constant hue,
varyingin brightnessand saturation. The network lattice had 1200 neurons (40X 30) fully
conreded to two inpu feaure neurons coding the stimuli’s brightness and saturation.
The inpu vedors were generated from 9 two-dimensional feaure vedors of the original
stimuli employed in the task, with additional normal distributions of external (<o>=1.06)
and interna noise (<0>=0.05). Table 2 presents a @mparison between the
experimentally observed confusion matrix (human performance top dark line in ead
row) and the cnfusion matrix generated by the model (secondline).

All the results presented henceforth were obtained by averaging the identificaion
performance of 100 networks employing identicd dynamica parameters, but varying the
initial values of the network’s g/naptic weights, smulating a popdation d 100

“subjeds’.
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Table 2. Comparison between the observed and predicted confusion matrices of Shepard's (1958
task. In ead row of the matrix, the top dark line indicates the observed frequencies form the
experimental data, the second line indicates the frequencies generated by the model and the third

line depictstheir standard error. All values are rounded to the dosest integer.

1 2 3 4 5 6 7 8 9
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(6) 1) @ (19 @ @O @ 6 @

2l 33 109 13 15 11 3 9 4 3
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(10) (15) (6 (13) (10) (2 (2 (6) (2

3 12 14 123 3 21 13 4 6 3
1 9125 2 22 30 1 9 1

@ (M (18 () (18 (17 (A7) (2 ()
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0 21 1123 9 1 25 1 9

@ (1) @) (19 ®& @ @ (18 2

5| 7 14 24 11 92 15 11 20 6
2 18 18 11 110 8 17 16 2
@ ® 19 © dn 0O 0O (© (12

6 5 6 11 3 7 143 3 19 3
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L @ (16 @O @ (18 (18 (2 (17
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of 1 3 2 14 4 4 12 4 156
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@ @ @ (12 3 @ (15 (@ (18

Threemgjor indices have been cdculated to examine the quality of fit between
the experimentally observed and model predicted matrices. the Correlation, the
Sun-Squaes Error and the LikdihoodRatio.

The oorrelation between the matrices is a somewhat problematic index, since the
largest values are @mncentrated on the diagorel. The orrelation index, which gves
higher weight to the simil arity between high-valued cdls, may thus give high correlation
values for matrices with similar diagordls, but that still may significantly differ on their

off-diagoral terms. Hence, correlation cdculations were gplied separately to the



Similarity in Perception: A window to brain development 15

diagoral and df-diagoral regions, yielding adiagoral correlation d the data displayed in
Table 2 of r=0.89 (t=5.16, p<0.005 (Figure 3) and an off-diagoral correlation d r=0.80

(t=11.15, p<0.0005.

90.0%

80.0% | Correlation: 0.89
g 700%
Z 60.0% |
c
8 50.0% +
3 40.0% |
S 30.0% |
S 200% |
X 100% |

0.0% ‘ ‘ ‘ ‘ ‘ ‘

1 2 3 4 5 6 7 8 9
stimuli number
O Predict M Observed

Figure 3. Comparison d predicted versus observed corred identification frequencies (diagonal
values) for al 9 stimuli in the Shepard's identification task. Bladk bars represent the
percentage of corred answers in hunan data, and white bars represent the model generated
resporses. The standard error of the model resporsesis portrayed by the eror bar on topd the
model white bars.

We have dso cdculated the Sum-Squared Error between the observed and
predicted confusion data on the entire matrix (SE) and onthe diagoral aone (DSSE).
In order to compare between dfferent experiments, these S and DSSE values were
normalized by the total number of trials of the experiment. The last index cdculated was
the log-likelihood ratio testing. This index is often used in smilarity experiments to
determine the quality of fit, and is utilized to compare the model’s performance with

those psychologicd experiments that use thisindex (SeeAppendix II).
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The pattern of error distribution between predicted and olserved frequencies
aaossall matrix entries has a zeo mean, testifying to the dsence of a systematic bias
(drift) in the predicted confusion matrix.

In addition to Shepard’ s experiments, similar simulation experiments and analysis
were performed to simulate four other identificaion tasks. The results, summarized in
Table 3, testify to the aility of the network model to provide a ¢ose fit to awide variety
of pertaining experimental data. Y et, the model results are not as goodas those adieved
previously with the best MDS choice models. The latter embody a much larger number
of free parameters to fit the data and perhaps more important, their kernel functions are
varied aaossexperiments.

Table 3. An owerview of the results of simulating five different similarity experiments. The model's

results are compared with their strongest adversary, i.e., with the best fit achieved in ead experiment.

Model Correlation Sum Square
Error
Experiment No. of No. of |Dim Free Diagonal  Non Total |Diagonal Total
Subjects |Stimuli Parameters diagonal (DSSE) (SSE)

Shepard 1958 |36 9 2 [Neural 2 0.89 0.80 0.98 (0.6+0.4 2.1+0.9
MDS-Choice |28 0.99 095 0.99 |0.15 0.43

Hodge 1962° |6 8 3 [Neural 2 0.87 0.75 0.97 [2.7+0.8 4.5+1.0

Kornbrot 1978°

Subject 1 1 8 1 ([Neural 2 0.87 0.97 0.97 |0.3+0.4 2.4+0.7
Gaussian (14 0.99 099 0.99 |0.22 0.61
MDS-Choice

Subject 2 1 8 1 ([Neural 2 0.85 0.87 0.93 |1.5+0.8 3.3+1.0
Gaussian (14 0.97 099 0.99 |0.22 0.61
MDS-Choice

Nosofsky 1989 (57 16 2 [Neural 2 0.80 0.88 0.94 (0.8+0.2 4.2+0.4
Gaussian (45 0.98 097 0.99 |0.23 1.02
MDS-Choice

? Hodge and Pollack's (1962 experimental data gppea in Nakatani 1972
° Kornbrot's (1978 experimental data is reexamined in Nosofsky 1985
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Learning Identification

Next we provide adetail ed description d the way the model develops and self-organizes
throughtraining onthe dynamic Munsell’s 12 colors experiment (Nosofsky, 1987). The
experiment of Nosofsky is espedally interesting since it provides a unique sequence of
three onseautive confusion matrices, which are obtained from human subjeds as they
lean the task. This data provides drong experimented constraints on the
self-organizaion processof the smulated map representation. In Nosofsky’s experiment
the stimuli were 12 Munsell colored chips with constant red hue (5R). The wlored chips
were varied in brightnessand saturation. Nosofsky’s experimental sesson was organized
in 3 blocks of 108trials ead, and a wnfusion matrix was obtained for ead block. Block
1 denotes the nfusion matrix obtained after the first 108 trials, Block 2 after 216trias
and Block 3 after 324 trials. Asin the previous smulation d Shepard’s experiment, the
inpu stimuli were generated from 12 2-dimensional feaure vedors of the origina
stimuli with namal distribution d external noise (<0>=1.06) and internal noise (<o
>=0.05), in a network array of 1200 neurons (40X30). While training the network by
repededly presenting inpu vedors from this distribution and applying the dynamics
defined in Equetion (4), the leaning radius R was gradually reduced from R =15to R,
=linatota of 25000iterations. In eat of these deaeaing R, steps, 30 diff erent radius
of adivity levelswhere gplied (R, =30..1) and a wnfusion matrix was obtained for eadt
(R,R,) pair Hence in total, the model has provided 450 (15X30) confusion matrices,

eat with a different R,-R_combination’. (As describe in the Model sedion, the two free

* Note that this procedure is made possble since R, does nat take part in the network self-organizaion
dynamics during training, and therefore the same network (i.e., with a given R_ value) can be used to

generate different confusion matrices by varying the value of R, without affeding its slf-organization.
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parameters R and R, represent the radius of synaptic changes aroundthe winner neuron
and its neighbahoodadivity, respedively).

In order to study the caability of the network to simulate the dynamics of
leaning, i.e, to fit al three experimental confusion matrices gradually as the network
self-organizes and cevelops, we @mmpared ead ore of the 450 smulation-generated
matrices with ead o the three xperimental human block matrices, using the normali zed
DSSE index. Figure 4 describes the resulting DSSE index for threelevels of leaning
radius R (R, =10,7,4), varying the adivity radius R,. For agiven R_level, eadt figure
contains three wrves, depicting the acaracy by which the model’s results match the
experimental data contained in Nosofsky’ s threelearning docks, as afunction d R,. For
a given bock the best fit is achieved when its correspondng curve gets its minimum
error value. The Figure anphasizes the fad that the aility of the neural model to predict
the threeblocksis highly influenced bythe values of R and R,.

At the very beginning d the leaning, immediately after the spread ou phase,
(R.=10fig 44&), Block 1 achieves the maximal fit with the model’s generated confusion
matrices for al possble R, levels. Later, when R =7 (fig 4b), block 2 adrealy succeeals
in repladng Hock 1 as the best fit at lower R, values (R,<17). Throughtraining as R
deaeases (thisis necessary otherwise the map will not converge and stabili ze), thereis a
criticd R level below which the model can succesully fit al three experimental blocks.
The best fit of the model’s confusion matrix transitions as R, is deaeased from Block 1
to Block 2 to Block 3 (R =4, fig 4c), predsely in the same order of their occurrence in
the human psychoogicd experiments. Hence, we find that in order to fit the
psychdogical data, R, must deaease with learning. The adivity in the entire network

must hence deaease @ the network leans (seeFigure 5a). Nosofsky’s (1987 experiment
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is smilar to that performed by Shepard (1958, were the mnfusion matrix was obtained
after 200 trials. Remarkably, the R,-R_values providing the best fit with the
experimental data of Shepard fit well with best fit R,-R_plot foundfor Nosofsky’s data,

as fwown in Figure 5h.
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Figure 4. The normalized DSE (Diagoral Sum Square Error) when modeling Nosofsky's data (1987).
The three plots describe the value of the normalized DSSE index (y-axis) as the function o R, (x-axis),
for different R_values. The gray triangles represent the fit with Block 1, the white redangles represent

the fit with Block 2 and the bladk diamonds represent the fit with Block 3.
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Figure 5. (@) Network adivity during leaning. The x-axis is the percentage of adive neurons in the
network. A neuron is considered "adive" when its adivity passes a threshold value of 20% of the
winner's adivity. The adivity in the best fit networks deaeases during training. (b) The best fit
combination d R, versus R . The black diamonds represent the best fit combinations for the Nosofsky
(1987 experiment. The white square represents the best fit R,-R, combination for Shepard's (1958
experiment.

Table 4 summarizes the smulation performance of the model in Nosofsky’s experiment
and compares it with two kinds of models. One is the dasscd multi-parametric MDS
choice model and the seond is a version d the dynamic choice model smulated by
Nosofsky (1987). To reducethe number of parameters used, the smulation version d the
choice model performed by Nosofsky used the original feaure mordinatesin order to fit
the data with a bias freedynamic choice model. As evident in Table 4, the neural model

and the smulated dyramic choice model achieve similar levels of fit as measured by the

log-likelihoodindex.
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Table 4. Performance during training onNosofsky's dynamic 12 Munsell's color experiment.

Model Correlation Sum Square Log-Likelihood
Error Ratio
Experiment Free Non Total |Diagonal Total
Parameters diagonal (DSSE) (SSE)
Nosofsky 1987
Block 1 Neural 2 0.78 0.74 0.95 |1.4+0.5 4.7+0.8 |-585+75
MDS 35 0.95 0.93 0.99 |0.3 1.3 -386
Dynamic
Choice
Simulation of (2 -532
Dynamic
Choice
Block 2 Neural 2 0.86 0.72 0.98 |0.9+0.4 4.2+0.7 |-528+28
MDS 35 0.97 0.98 0.99 |0.2 0.6 -268
Choice
Simulation of (2 -505
Dynamic
Choice
Block 3 Neural 2 0.83 0.77 0.99 |0.9+0.3 2.5+0.4 |-395+19
MDS 35 0.97 095 0.99 |0.2 0.5 -235
Choice
Simulation of (2 -403
Dynamic
Choice
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Understanding the model’ s operation requires an investigation d the dfed of training on

the network’s fedure space Figure 6 displays the spatia organization d the prototype

popuation vedors in the threenetwork training states leading to maximal fit with Blocks

1, 2 and 3 respedively. The results demonstrate that representation d stimuli becomes

more discriminable over time, as the distances between the prototype popuation vedors

increases. Thus, the dfed of the internal noise deaeases (even though its absolute

magnitude remains fixed) and the identificaion performance gradually improves
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Figure 6. Spatial organization d the prototype popuation vedors during training. The figure depicts the

popuation encoding representations of the prototype vedors in the brightnesg saturation feaure space

(solid sguares). Time (training) progresses from subfigure (a) to (c).

Imposing Winner-Take-All (WTA) constraintson R, (by keeping R, constant and equal

to 1 throughtraining) resultsin a severe degradationin the &ility of the mode to fit the

data (Figure 7). The WTA approad provides agoodfit only towards the end d training

while & ealier stagesits DSSE and S error indices are more than twice than those

adhieved while optimally deaeasing R, asafunction d R .

® It shoud be noted that R, and R, are not symmetric in the sense that R_is a aucial parameter for

network convergence and thus must gradually deaease over time. R,, in contrast, is sgnificant only for
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Figure 7. Quality of fit with fixed R,=1 (WTA constraint) versus optimal R, variation and popuiation
coding smulating Nosofsky's experiment. The optimal R, variation and popuiation coding is represented
by the gray bar, the WTA constraint is represented by a white bar. (a) The DSSE index (y-axis). (b) The
S&E index (y-axis). The standard error of the optimal R,-R_ variationis portrayed by the aror bar on top

of the gray bars.

DISCUSSION

In this dudy we have explored the aility of a neural model of similarity perception to
smulate five different indired similarity experiments. Identifying a set of inpu stimuli
fedure vedors, the model generates a @wnfusion matrix that can be wmpared dredly
with the pertaining experimental data. Our results suggest that self-organizing maps
based on the dynamics of popuation coding can model human resporses fairly
acarately, usng very few parameters. The principa findings suggest that in order to

obtain a good fit with the psychologicd data, the adivity in the entire network must

"reading’ the network's identification ouput, and its variation daes not affed the organization d neural

map.
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gradually deaease while leaning the task. Thus, the model predicts that smultaneously
with a gradual reduction in synaptic modificaions, the network adivity shoud also
gradually dedine. To oltain a good fit one must use a popuation coding approach
instead of the perhaps more cnventional WTA method for “reading’ the network’s
output. Finally, the model produces a reasonable fit to the experimental data of
3-dimensiona perceptual space(Hodge 1962 See Table 3), where the SOM mapping to
the 2 dimensional network array also invalves areduction in the number of dimensiors.

The topdogicd organizaion and popuiation coding charaderistics of the neural
model find suppat in anima experiments of similarity as briefly reviewed in the
Introduction. Similar evidence for topogaphicd maps has been recently foundaso in
higher perceptua levels (Fujita @ a, 1992 Gochin et al, 1991 Wang et a., 1996
Tanaka, 1996. The sparse popuation coding foundin identification tasks invalving a
longtraining period (e.g., Young& Yamane, 1992 fits with model’s prediction that the
adivity shoud drop dawvn asthe map organizes.

The neural model presented here shares common fundamenta properties with
previous psychologicd models. Like the GRT model, the neural model generates a new
representation d the stimuli in the perceptual space Asin GRT, the identificaion d an
inpu stimulus depends on the boundries in which the stimulus representation falls
in.The asymmetric relations are due to the asymmetric anourts of overlap between the
distributions correspondng to ead class. However, the GRT model relies on an explicit
ongang supervised comparison hbetween the stimuli and their representations in the
model to further adjust the model parameters to oltain maximal fit. In contrast, the
neural model adhieves this maximizaion gal in a self-organizing ursupervised manner.

This property places our model in an ided paositionto provide anatural, on line, acourt
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of identification duing training in reura terms. The neural model also shares common
computational principles with the MDS approadh, since the topdogicdly preserving
algorithm of the SOM well approximates the operation d a metric preserving algorithm
like MDS (Kaski, 1997). However, an important distinction between the operation o
our model and MDS-based choice models is that the output identificaion in the neural
model is performed in the original (possbly high-dimensional) fedure space ad nd in
the reduced MDS space In summary, the SOM-related neural model proposed here
provides an interesting example for a posshle identificaion medanism which
incorporates both GRT and MDS-li ke dynamics, suggesting that in some sense both these
approaches may play a part in similarity identification in the brain.

The main advantage of our model over previous MDS-choice and GRT modelsis
that it provides a neural level description for similarity perception in the brain. While
some of the ealier psychoogicd mathematicd models have obtained better fit with the
experimental data, the neural model obtains a fairly close fits to the data cwnsidering the
very few free parameters it uses. Furthermore, it shoud be enphasized that the number
of parameters emboded by the neural model is independent of the dimension and nunber
of stimuli. The model uses only two free parameters (R, R,), given fixed values of
external and interna noise and guessng resporse, while previous psychoogicd
mathematica models have required many free parameters snce they rely on an explicit
representation d the distances between the stimuli and their biases. The neural model’s
parameters have aclea meaning in neura terms that helps us to better understand the
underlying physiologicd medanisms. Since the model dynamics take place in a

self-organizing manner, stimulus identificaion is performed withou the neel to
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explicitly speafy many parameters. Instead, the “distances’” between stimuli are

implicitly defined by the geometry of the self-organized ouput feaure space

The biologicd plausbility of the popdation coding method and the
Self-Organizing Map algorithm has been argued by Georgopouos et a. (1982 1989
and Kohoren (1993, respedively. The popuation coding method res been found to
provide afair acourt of neural adivity pattern, during veriety tasks and dfferent
modalities (e.g., Georgopouos et al., 1989 Schwartz, 1994). The Winner-Take-All
function can be implemented by laterally conreded network with excitatory short range
lateral feadbadk conredions and inhibitory longer range ones. Under these mndtions a
“pe&” of adivity is formed at the neural cluster that best matches the external inpu.
The leaning procedure can be implemented by synaptic interadions that are mediated
via adiffuse demicd agent (grosdy represented in ou model by the R parameter).
During leaning the dfedive range of the diffuse chemica moduation is deaeased from
afairly wideto anarrow value. A goodcandidate for the diffuse neuromoduator agent
may be Nitric Oxide (NO) that has been found to be produced in propation to the
postsynaptic patential and to control synaptic plasticity (Fazdi, 1992. The neighbahood
adivity around the winner neuron can be @ntrolled by an inhibitory processwhich is
represented by the R, parameter and mainly refleds the adivation d the long range
inhibitory conredions. The redizaion d such a deaease in the radius of adivation
surroundng winning reurons may occur in biologicd networks via the ad¢ion d seand
order processes such as neural fatigue and adaptation. The main motivation for assgning
distinct parameters for R and R, was that synaptic modificaions and reural adivity

might be governed by dfferent moduation pocesses sich as distinct neuromoduators
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and dffuse dhemicds. Nevertheless the finding that these two processs covary in the
same diredion suppats the posshility that one can oltain successul SOM models of
smilarity perception wsing adivity-dependent Hebbian leaning withou the neel to
spedfy an explicit radius of leaning.

In summary, this paper presents a novel neural model of identification, forming a
tentative cnceptual bridge between the pertaining pychoogicd and reurophysiologicd
data. The neal to fit the cogntive eperimental data, in turn, suggests interesting
constraints concerning lrain organizaion and development in perceptual processng

regions.

Acknowledgments
We thank Daniel Algom for his helpful comments and suggestions. Reprints requests
shoud be sent to Eytan Ruppn Departments of Computer Science & Physiology,

Tel-Aviv University, Tel-Aviv 69978 Israd, or via email: ruppn@math.tau.acil .

References

Ashby, F. G., & Perrin, N. A. (1988. Toward a unified theory of smilarity and
reagntion. Psychological Review, 95, 124150,

Ashby, F. G., & Townsend, J. T. (1986. Varieties of perceptua independence
Psychological Review, 93, 154179

Ashby, F. G., & Lee W. W. (199])). Predicting similarity and caegorization from

identificalion. Journal of Experimental. Psychology: General, 120, 150-172



Similarity in Perception: A window to brain development 28

Edelman, S. (1995. Representation d similarity in 3D objed discrimination. Neural
Computation, 7, 407-422

Edelman, S., & Duvdevani-Bar, S. (1997). Similarity, connedionism and the problem of
representation in vison. Neural Computation, 9, 701-720.

Fujita, 1., Tanaka, K., Ito, M., & Cheng, K. (1992. Columns for visua feaures of
objedsin monkey inferotemporal cortex. Nature, 360, 343-346.

Georgopouos, A. P., Kaaska, J. F., Caminiti, R.,, & Massy, J. T. (1982. On the
relations between the diredion d two-dimensional arm movements and cdl discharge
in primate motor cortex. Journa of Neuroscience, 2, 15271537,

Georgopouos, A. P., Kalaska, J. F., Crutcher, M. D., Caminiti, R., & Massy, J. T.
(1984. The representation d movement diredion in the motor cortex: Single cdl and
popuation studies. In Edelman, G. M., Gall, W. E, &. Cowan, W. M, (Eds.). Dynamic
aspeds of neocortex

Georgopouos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B., and Massy, J. T.
(1989. Mental rotation d the neural popuation vedor. Science, 243 234236

Gochin, P. M., Miller, E. K., Gross C. G., & Gerstein, G.L. (199]). Functiona
interadions among reurons in inferior temporal cortex of the avake macajue.
Experimental Brain Research. 84, 505-516.

Grgski, K., & Merzenich, M. (1990. Hebb-type dynamicsis sufficient to acourt for the
inverse magnificaionrulein corticd somatotopy. Neural Computation. 2, 71-84.

Guenther F. H., & Gjga M. N. (1996. The perceptual magnet effed as an emergent
property of neural map formation. Journal of the Acoustical Saciety of America, 100,

11111130



Similarity in Perception: A window to brain development 29

Hodge, M. H. (1962. Confusion matrix analysis of single and multidimensional auditory
displays. Journal of Experimental Psychoogy, 63, 129142

Kaski, S. (1997). Data Exploration wsing self-organizing maps. Mathematics and
Management in Engineeging No. 82, Acta Polytechnica Scandinavica Finnish
Academy of Techndogy.

Kent, F. K., Youngentob, S. L., & Paul R. S. (1995. Odorant-spedfic spatial patternsin
mucosal adivity predict perceptual differences among odoants. Journa of
Neurophysiology, 74, 17771781

Kohoren, T. (1982. Self-organized formation d topdogicdly corred fedure maps.
Biological Cybernetics, 43, 59-69.

Kohoren, T. (1989. Sef-Organizing and Associative Memory. (3rd ed.) Springer,
Berlin.

Kohoren, T. (1993. Physiologicd interpretation o the self-organizing map algorithm.
Neural Networks, 6, 895905

Kornbrot, D. E. (1978. Theoreticd and empiricd comparison d Luc€ s choice model
and logistic Thurstone model of caegoricd judgment. Perception & Psychoptysics,
24,193208

Kuhl, P.K. (199]). Human adults and human infants $iow a ‘perceptual magnet effed’
for the prototypes of speedt caegories, monkeys do nd. Perception & Psychoplhysics,
50, 93-107.

Luce R. D. (1963. Detedion and reaogntion. In Handbodk of mathematical
psychoogy, Luce R. D., Bush, R.R., Galanter, E. (Eds.). 1, 103190. New York:

Wiley.



Similarity in Perception: A window to brain development 30

Nakatani, L.H. (1972. Confusion-choice model for multidimensional psychophysics.
Journal of Mathematical Psychdogy, 9, 104-127.
Nosofsky, R. M. (1985. Lucés choice model and Thurstone's categoricd judgment
model compared: Kornbrot's data revisited. Perception & Psychoplysics, 37, 89-91.
Nosofsky, R.M. (1987. Attention and leaning processs in the identificaion and
caegorizaion d integra stimuli. Journal of Experimental Psychology: Learning
Memory & Cogntion, 13, 87-109.

Nosofsky, R. M. (1989. Further tests of an exemplar-smilarity approad to relating
identificalion and caegorization. Perception & Psychoplysics, 45, 279290,

Nosofsky, R. M. (1992. Similarity Scding And Cogntive Process Models. Annud
Review of Psychalogy, 43, 25-53.

Schwartz, A. B. (1994. Dired corticd representation d drawing. Science, 265 pp.
540542

Shepard, R. N. (1957). Stimulus and resporse generalization: A stochastic model relating
generalizaionto dstancein psychaogica space Psychometrika, 22, 325345,

Shepard, R.N. (1958. Stimulus and resporse generalizaion: Tests of a model relating
generalizaion to dstance in psychoogicd space Journa of Experimental
Psychadogy, 55, 509523

Tadashi, S., Ededman, S., & Tanaka, K. (1998. Representation d objedive simil arity
amongthreedimensional shapesin the monkey. Biological Cybernetics, 78, 1-7.

Tanaka, K. (1996. Inferotemporal cortex and ohed vison. Annud Revew of
Neuroscience, 19,109-139

Wang, G., Tanaka, K., & Tanifuji, M. (1996. Opticd imaging d functiona

organizaion in the monkey inferotemporal cortex. Science, 272 16651668



Similarity in Perception: A window to brain development 31

Wickens, T.D. (1982. Models for behavior: Stochastic processs in psychology. San
Francisco: Freanan.

Young M. P., & Yamane S. (1992. Sparse popuation coding d faces in the
inferotemporal cortex. Science, 256, 13271331

Youngentob, S.L., Markert, L.M., Mozdl, M.M., & Hornung D.E. (1990. A methodfor
establishing a five odarant identification confusion matrix task in rats. Physiology &
Behavior, 47, 10531059

Appendix | - Normalization of input feature stimuli vectors.

In order to namalizethe inpu fedure vedors, an agonst-antagonst methodwas used in

the smulations (Guenther & Gjaja, 1996. This method replaces ead fedure inpu

comporent x. with anew agonst-antagonst input of the form

(1) vt = . T R
1
\/(Xx - Xmm)2 + (Xxwxx - Xx)Z
@ % = Famx — %y
1
\/(Xx - Xmm)2 + (Xxwxx - Xx)Z

where the index i indicaes the feaure dimension nunber, %, isthe value of the feaure
comporent i in inpu vedor X, and %! and x[are the new agonst-antagonst

and x are the

AMPR AMIN

representations receptively of fegure cmporent i. The cnstants x

maximum and minimum values, respedively, for thei" feaure cmmporent.



Similarity in Perception: A window to brain development 32

Appendix 11 - Euclidean distance calculations.
The Euclidean distanced between the output vedor and the prototype popuation vedor

piscdculated by

@ 4 :\/zk(x(xk :j‘i)

LRIV 32
where % is the k comporent of the input vedor x and x® is the k" comporent of the
prototype popuation vedor p. x ., and % . ae the maximum and minimum values,

respedively, for the k" feaure comporent.

Appendix 111 - Log-Likelihood Ratio Testing.
The log-likelihood ratio testing is used to determine the quality of fit between the

psychadogicd data and the prediction d the neura model (Wickens 1982):

(4) inL = Z}“ N, - zizjm g0+ zizjiﬂ Min o,
where N, is the frequency with which stimulus i was presented, f, is the observed
frequency with which stimulus i was identified as dimulus j, and  is the predicted

probability with which stimulusi isidentified as dimulusj.



