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Abstract

Diagonals of continuous t-norms are studied. The characterization of all functions being diago-
nals of continuous t-norms is given. To a given diagonal, the class of all continuous t-norms with
this diagonal is characterized.
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1 Introduction

A triangular norm (a t-norm for short) is a commutative, associative, non-decreasing function 7': [0, 1]? —
[0,1] such that T'(z,1) = z for all z € [0,1]. In what follows, we deal only with continuous
t-norms, where the usual continuity of real functions is assumed. The basic continuous t-norms
are the minimum, Ty (z,y) = min(z,y), the product, Tp(z,y) = xy, and the Lukasiewicz t-norm,
Ti(z,y) = max(0,z +y — 1).

Definition 1.1 : For a t-norm T, the mapping ép:[0,1] — [0,1] defined by ép:x — T(x,x), is called
the diagonal of T'.

The following conditions are necessary for a function to be a diagonal of a continuous t-norm.

Proposition 1.2 : LetT be a continuous t-norm. Its diagonal is a continuous nondecreasing function
onto

dr:[0,1] == [0,1] such that op(z) < x for all 2 € [0,1].

For a function d: [0, 1] — [0, 1], we define I(0) = {z € [0,1]; d(x) =z} (=the set of all fixed points
of §). In particular, 0 and 1 are fixed points of all diagonals of t-norms. These are the only fixed
points of diagonals of important classes of t-norms.

Definition 1.3 : A continuous t-norm T is called Archimedean if 0 and 1 are the only fized points
of its diagonal, i. e., I(67) = {0,1}. If, moreover, ot is strictly increasing, then T is called strict. A
continuous Archimedean t-norm which is not strict is called nilpotent.

In combination with Proposition 1.2, a continuous t-norm 7" is Archimedean if and only if 7 (x) < x
for all z € |0, 1[.

Problems concerning diagonals of continuous t-norms appeared in several works. Recall, e. g., the
famous open problem of Schweizer and Sklar [7] whether the continuity of the diagonal implies the
continuity of the underlying t-norm. Mayor and Torrens [6] have characterized the t-norms determined
by means of their diagonal, §, via T'(z, y) = max(0, 6(max(z,y)) —|z—y|). Further, Bézivin and Tom4s
[1] proved that a strict t-norm 7' is uniquely determined by its diagonal, d;, and the values T'(x,y)
for all 2,y € [0, 1] satisfying = + y = a for a fixed value a € 0, 2].
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The first investigation of diagonals of continuous t-norms is due to Kimberling [3], namely for the
case of strict t-norms. We recall his result in a slightly modified version in Section 2. Section 3 is
devoted to the diagonals of nilpotent and Archimedean t-norms. In Section 4, we characterize the
diagonals of general continuous t-norms. In each case, the class of all t-norms with a given diagonal
is constructively characterized. Note that the only diagonal of a continuous t-norm having a unique
underlying t-norm is the identity, §(z) = x; in this case, the corresponding t-norm is the minimum
t-norm T [4, 7).

We shall often use the following representation theorem for continuous Archimedean t-norms (see,
e. g, [4,5,7]).

Theorem 1.4 : Let T be a continuous Archimedean t-norm. There is an additive generator of T,
i. e., a continuous strictly decreasing function f:[0,1] — [0, 00] such that

Va,y € [0,1] : T(z,y) = f~ (min(f(0), f(z) + f(y))).

(Notice that the condition T(x,1) = x implies that f(1) = 0.) Conversely, each continuous strictly
decreasing function f:]0,1] — [0, 00] satisfying f(1) = 0 is an additive generator of a unique t-norm.
The additive generator f of a t-norm T is determined uniquely up to a positive multiplicative con-
onto

stant. The value f(0) is finite if and only if T is nilpotent; in this case, the function f/f(0):][0,1] —
[0,1] is uniquely determined and it is called the normed additive generator of T

If f is an additive generator of a continuous Archimedean t-norm 7', then the diagonal dr satisfies
the functional equation f o d; = min(f(0),2f).

Corollary 1.5 : The diagonal o7 of a continuous Archimedean t-norm T is strictly increasing on
67 (10,1)). In particular, it is strictly increasing on [0,1]\ 67" (I(d7)).

(The latter corollary is important only for nilpotent t-norms; strict t-norms satisfy a stronger
condition by their definition.

Example 1.6 : 1. For the product, Tp, a corresponding additive generator is, e. g., f(z) = —logz.
The corresponding diagonal is drp (7) = z? and it is evident that —logz? = 2 (—log z).
2. Let f(z) = % — 1. Then f is an additive generator of so called Hamacher product, T, where

I for (z,y) # (0,0),
0 otherwise.

(see [2]). The corresponding diagonal is dry (7) = 575
Example 1.7 : 1. The Lukasiewicz t-norm 71, is nilpotent. Its normed additive generator is f(x) =
1 — x and the diagonal is 07y (z) = max(0, 2z — 1).

2. Let f(x) = (1 — x)2. Then the corresponding t-norm, Ty (), is the (nilpotent) Yager t-norm

with parameter 2 (see [8]),

Ty (2,y) = 1 — /min(1, (1 —2)% + (1 - )2),
5TY(2) (z) = max(0,1 — V2 (1 — z)).

Proposition 1.8 : Let f be an additive generator of a continuous Archimedean t-norm T. The
function g:[0,1] — [0,1] defined by

g:w — exp(—f(z))



is strictly increasing, continuous, and satisfies

Va,y € [0,1] : T(z,y) = g~ ' (max(g(0), g(z) - g(y)))-

It is called the multiplicative generator of T. If T is strict, then g(0) = 0, g is an automorphism
(=increasing bijection) of [0,1] and

Va,y € 0,11 : T(z,y) =g '(9(=) - 9(y)).

Remark 1.9 : The ambiguity in the choice of an additive generator causes an ambiguity of a multi-
plicative generator. For each r > 0,
9"z g(x)"

is a multiplicative generator of the same t-norm.

The following proposition shows that many t-norms have diagonals which are “close to drp near
the boundary points”.

Proposition 1.10 : Let T be a strict t-norm such that its multiplicative generator g has nonzero finite
derivatives at 0, 1. (We assume unilateral derivatives from the domain, i. e., the right derivative at 0
and the left derivative at 1.) Then the derivatives of its diagonal at the boundary points are 64.(04) = 0,
(1-) =2,

PROOF: : Derivative at 04: Suppose that ¢'(0+) = r € ]0, 00/, i. e.

lim M =
z—0+
For the inverse ¢! we have
oog ! x) 1
lim = -
=0+ T
The derivative of the diagonal is
S -1 2 -1 2
§.(04) = Tim r(z) _ o9 9@)7) 9 (9(2)7) g(x) ().
z—0+ T z—0+ x z—0+ g(x)2 x

(We denote the square of g(z) by g(z)?, not by g?(z), in order to avoid a confusion with g(g(z)).)
The first factor converges to %, the second to r, and the third to 0, so §.(0+) = 0.
Derivative at 1—: Suppose that ¢'(1-) = r € ]0, 00|, i. e.

lim LT) 1 =
z—=1- x—1
For the inverse ¢! we have
z)—-1 1
lim L0 11
r—1— r—1 r
The derivative of the diagonal is
() 1 g (g(e)?) 1 g (g(x)?) 1 g(z) 1
(1-) = lim —*—— = lim >—"“~>—— = lim >~ - . 1).
e L L R LT N I
The first factor converges to 1, the second to r, and the third to 2, so 07.(1—) = 2. O



Corollary 1.11 : Under the assumptions of Proposition 1.10, the diagonal é7 converges to orp al
the boundary points in the following sense:

or(z) — drp (7)

lim =0,
r—0+ xr
) — &
i 7@ 0@
r—1— 1—=z

The latter corollary suggests that the diagonals of strict t-norms should be “similar” to the diagonal
Orp: T = 2?2 of the product t-norm. It is therefore surprising that no such relation holds in general.
In the next section, we shall show that the diagonals of strict t-norms may be much more general.

2 Diagonals of strict t-norms

We start the characterization of diagonals with the special case of strict t-norms. Proposition 1.2
and Definition 1.3 give necessary conditions for a function to be a diagonal of a strict t-norm. We
may reformulate them using the fact that a strictly increasing continuous surjection is an (order)
automorphism.

Proposition 2.1 : Let T be a strict t-norm. Its diagonal, 61, is an automorphism of [0,1] such that
dr(z) <z for all z € ]0,1].

We shall prove that the necessary conditions from the latter proposition are also sufficient. Let
d be an automorphism of [0,1] such that é(z) < x for all x € ]0,1[. We shall construct an additive
generator, f, of a strict t-norm with the given diagonal ¢ (see also [3]).
We denote by id the identity on [0,1] and by Z the set of all integers. We define functions §",
n € Z, recursively by
id if n=0,
" =1 do ! if n>0,
d o™t if n<O.

We start the construction of f at an arbitrary point s € ]0,1[, and we put f(s) = 1/2. (We may
take for f(s) an arbitrary positive real number. This ambiguity corresponds to the fact that positive
multiples of f generate the same t-norm.) We form a sequence (6" (s))ncz. It is strictly decreasing.
As 0 and 1 are the only fixed points of § (as well as of 1), we obtain

lim 0" (s) = 0,
n—-+0o0o

. n .
nll}rjl@& (s) =1.

Because of the required functional equation f o d = 2f, we must define f for all §"(s), n € Z, by

F@"(s)) =2" f(s) = 2"\,

These are the values of f which are determined by the choice of s and f(s) and by the diagonal §. The
values of f at other points are restricted only by the monotony of f and by the functional equation
fod=2f, so we have some freedom in their choice. Let ¢:[d§(s),s] — [1/2, 1] be an antiisomorphism
(=decreasing bijection). For each z € |d(s), s[, we define f(z) = ¢(z). For all n € Z, the mapping
5™ maps isomorphicly ]6"*"(s), " (s)[ onto ]§(s), s[. For n € Z and z € 16" (s),d"(s)[, we define

fla) = 2" p(6 " (&),



The function f defined on ]0, 1] this way is strictly decreasing and continuous, because @ o =" is an
antiisomorphism of [0"!(s), §"(s)] onto [1/2, 1], and 2" pod ™ is an antiisomorphism of [§"+1(s), 6™ (s)]
onto [211, 2] = [£(6"(s)), F(5"* (5))].

Thus we have f defined for all elements of |0, 1[. It remains to define f(0) = 400, f(1) = 0, and
verify the continuity. As

lim f(6"(s)) = lim 2"7' = 400 = f(0),

n—+4oo " n—+oo

lim f(6"(s))= lim 27" 1 =0=f(1),

n—40o n—-4oc

the continuity and monotony of f on [0, 1] are verified, and f is an additive generator of some t-norm,
Ts,,- (The indices of the t-norm refer to the chosen value s and an antiisomorphism ¢: [§(s),s] —
[1/2,1] which, together with the given function ¢, determine the t-norm uniquely.) According to the
definition of f,

Ty oz, x) = fH(2f(2)) = 1 (6(2))) = d(x)

for all x € [0,1], so 6 is the diagonal of T} .

The choice of the antiisomorphism ¢ leads to infinitely many different t-norms with the same
diagonal. Indeed, let @1, @2:[0(s), s] = [1/2,1] be two different antiisomorphisms and let fi, fo be the
corresponding additive generators obtained by the above construction. There is a y € ]d(s), s| such
that ¢1(y) # w2(y). Then fi(y) # fa(y) and fi(s) = 1/2 = fa(s), so fo/f1 is not a constant function
and f1, fo generate different strict t-norms (Theorem 1.4).

In contrast to the latter discussion, the choice of the starting point s has no influence on the
resulting t-norm in the following sense: For any strict t-norm T, constructed by the above proce-
dure and for an arbitrarily chosen starting point s* € ]0,1[, we can always find an antiisomorphism
©*:[0(s*),s*] = [1/2,1] such that T, , = Ty ,-. We summarize the above results.

Theorem 2.2 : Let § be an automorphism of [0, 1] such that §(z) < x for all x € |0,1[. Let s € ]0,1]
be a chosen point. The class Ty of all strict t-norms with the diagonal § is given by

Ts = {Ts,p; @:[0(s),s] = [1/2,1] is an antiisomorphism}.

Corollary 2.3 : The necessary conditions of Proposition 2.1 for a function to be a diagonal of a
strict t-norm are also sufficient.

Example 2.4 : Let §(z) = 22, s = 1/v/2. Then §(s) = 1/2 and §"(s) =22" ', n € Z.

1. We define ¢;:[1/2,1/+/2] — [1/2,1] by ¢(z) = —logyz. Then the corresponding additive
generator, fi, is given by fi(z) = —logyz, € [0,1], and T ,, = Tp.

2. We define o:[1/2,1/v/2] — [1/2,1] by

The corresponding strict t-norm, T ,,, satisfies
16 16
TWPQ (04,05) = f;1(225) — 8_1 ?é % == TP(04,05),

so T ,, # Tp.



3 Diagonals of nilpotent and Archimedean t-norms

Now we shall characterize the diagonals of nilpotent and Archimedean t-norms. Necessary conditions
are given by the following proposition (a consequence of Proposition 1.2 and Definition 1.1).

Proposition 3.1 : Let T be an Archimedean t-norm. Its diagonal ép satisfies the conditions of
Proposition 1.2 and

(N1) I(é7) = {0, 1},
(N2) op is strictly increasing on 55" (]0, 1[).

As a consequence of Corollary 1.5, there is an s € [0, 1] such that dp(z) = 0 for all z € [0, s, and
o7 is strictly increasing on [s, 1]. The value s is given by s = f1(1/2), where f is the normed additive
generator of T', and s is zero (resp. positive) if and only if T is strict (resp. nilpotent).

Again, we shall show that the necessary conditions from the latter proposition are also sufficient.
The case of a strict t-norm was solved in the preceding section, now we shall modify the construction
for a nilpotent t-norm.

Let 6:[0,1] — [0,1] be a continuous nondecreasing function satisfying the conditions of Propo-
sition 1.2 and (N1), (N2). Due to continuity, there is a maximal s satisfying d(s) = 0. We shall
construct a normed additive generator f of an Archimedean t-norm T with diagonal §. For s = 0 we
obtain a strict t-norm by Theorem 2.2. Suppose that s € ]0,1[. By a modification of the construction
from the preceding section we shall construct a nilpotent t-norm 7' with diagonal 6.

The sequence (0" (s))p=1,0,1,.. is strictly increasing and

lim ¢"(s) = 1.

n——0oo

It is easy to see that each normed generator f of a nilpotent t-norm 7" with diagonal § has to satisfy
f(o™(s)) =21 n=1,0,—1,-2,... . Let ©:[0,s] = [1/2,1] be an antiisomorphism. Repeating the
ideas from Section 2, it is enough to put f(1) = 0 and

fw) = 2" (67" (2))

whenever z € ]0"T!(s),0"(s)[, m» = 0,—1,—-2,.... We obtain a normed additive generator, f, of a
t-norm T, with diagonal 0. (In this case the value s was given by the properties of §, not arbitrarily,
so we index the t-norm only by the antiisomorphism ¢.)

Theorem 3.2 : Let 6:]0,1] — [0,1] be a function satisfying the conditions of Proposition 1.2 and
(N1), (N2). Suppose that s = sup{z; 0(x) = 0} > 0. Then the class Ty of all nilpotent t-norms with
diagonal § is given by

Ts = {Ty; ¢:10,s] = [1/2,1] is an antiisomorphism}.

Corollary 3.3 : The necessary conditions of Proposition 3.1 for a function to be a diagonal of an
Archimedean t-norm are also sufficient.
Example 3.4 : Let () = max(0,2z — 1). Then s =1/2, 6"(s) =1-2""1 n=—-1,-2 ... .

1. We define ¢;:]0,1/2] — [1/2,1] by ¢1(z) = 1 — . Then the corresponding normed additive
generator fi is given by fi(z) =1—z, and T,, = Tt..

2. We define 5:[0,1/2] — [1/2,1] by @2(z) = 272%. Then the corresponding normed additive

generator fo is given by
fol) = 22" () n2

whenever z € [1 —2",1 —2""'], n=0,-1,-2,... . For the corresponding t-norm T,, we obtain
1
Ty,(0.5,0.75) =1 — 2 logy 3 # 0.25 = T1,(0.5,0.75)

so Ty, # Tv.



4 Diagonals of continuous t-norms
All continuous t-norms were characterized by Ling [5] (see also [4, 7]).

Theorem 4.1 : A mapping T:[0,1]2 — [0,1] is a continuous t-norm if and only if there is a dis-
joint system (Jak, Br[)kex of open subintervals of [0,1] and a system (fx)rex of continuous strictly
decreasing functions fi: oy, Bk] — [0,00], fr(Bk) =0, k € K, such that

T(z,y) = { fl;1(min(fk(04k)afk($) + fu(v)) if (z.y) € [ag, Bi)* for some k € K,

min(z, y) otherwise.

Let T be a continuous t-norm and d7 its diagonal. If 07 (x) = dr(y) for some x < y, then z,y are
contained in an interval [ay, B[ of the representation of T' with fi(ay) finite, and hence dp(z) is a
fixed point of 7. We obtain the following necessary conditions for diagonals of continuous t-norms.

Proposition 4.2 : Let T be a continuous t-norm. Its diagonal ép fulfils the conditions of Proposi-
tion 1.2 and

o7 is strictly increasing on [0,1]\ 0,1 (1(37)).

Again, we shall prove that the necessary conditions of Proposition 4.2 are also sufficient. We start
from a continuous function §: [0,1] — [0, 1] fulfilling the properties of Proposition 4.2. The continuity
of ¢ ensures that the set I(d) is closed. Consequently, its complement [0,1] \ 7(J) can be written as
a disjoint union of a system (Jay, Bk[)kerx of open subintervals of [0,1]. If K = (), then only T has
diagonal §. Assume that K is nonempty. The construction of a continuous t-norm T with diagonal §
can be done in two steps:

1. For arbitrary k € K, put d: [0, 1] — [0, 1],

dag + (Br — ag) ) — ag
Br — ay, '

Ok (2) =

Then ¢, satisfies the conditions of Corollary 3.3 and it is the diagonal of an Archimedean t-norm, 7}.
2. We define the t-norm T as follows:

{ ag + By — ag) - Tp (=%, 2=%% ) if (1,y) € [ag, B]? for some k € K,

Br—ar’ Br—ayg

T(x =
(z,y) min(z, y) otherwise.

It is immediate that T'(z,z) = d(z) for all z € [0,1]. Based on the preceding results, we obtain the
following characterization of diagonals of continuous t-norms 7.

Theorem 4.3 : The conjunction of the following conditions is necessary and sufficient for a function
0:[0,1] — [0, 1] to be a diagonal of a continuous t-norm:

0 is a continuous, nondecreasing surjection,
Vz €[0,1]:6(z) <z,
§ is strictly increasing on [0,1]\ 6 '(1(0)), where I(8) = {z € [0,1]; d(x) = =}.

The characterization of all continuous t-norms T" with given diagonal § follows directly from the
preceding results. In each interval Jay, Bx[, we construct the function fj according to Theorem 2.2 if
J is strictly increasing on [, k], and according to Theorem 3.2 otherwise (with the corresponding
choice of a point sy and an antiisomorphism ¢y: [0(sk), sg] — [1/2,1]). This procedure allows to
describe the collection of all continuous T-norms with the diagonal 4. For strict (resp. Archimedean)
t-norms, Theorem 4.3 with Definition 1.3 give Corollaries 2.3 and 3.3 as special cases.
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