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ABSTRACT

Local orientation estimation can be posed as the problem of
finding the minimum grey level variance axis within a local
neighbourhood. In 2D image signals, this corresponds to the
eigensystem analysis of a 2×2-tensor, which yields valid re-
sults for single orientations. We describe extensions to mul-
tiple overlaid orientations, which may be caused by trans-
parent objects, crossings, bifurcations, corners etc. Multiple
orientation detection is based on the eigensystem analysis of
an appropriately extended tensor, yielding so-called mixed
orientation parameters. These mixed orientation parameters
can be regarded as another tensor built from the sought indi-
vidual orientation parameters. We show how the mixed ori-
entation tensor can be decomposed into the individual ori-
entations by finding the roots of a polynomial. Applications
are, e.g., in directional filtering and interpolation, feature
extraction for corners or crossings, and signal separation.

1. INTRODUCTION

Estimation of local orientation is essential in a variety of
multidimensional signal filtering and analysis tasks, like di-
rectional filtering [1, 2], directional interpolation [3], fea-
ture extraction for pattern analysis [4, 5], and the concept
of intrinsic dimension [6]. Local orientation can be defined
as the direction along which the grey level profile exhibits
least average variation over a small neighbourhood. The
orientation can then be found by analysing the eigenvectors
of a tensor, while the grey level variation along and perpen-
dicular to the orientation is given by the lower and larger
eigenvalue, respectively. The elements of the tensor are cal-
culated from the observed image data by filtering, viz. by
differentiation or by quadrature filters, and nonlinear oper-
ations like squaring [4, 7, 5, 8]. This framework assumes
that only a single orientation is present. In case of two or
more superimposed orientations, the eigenvectors no longer
represent orientation. Such neighbourhoods — generated,
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for instance, by corners — are characterized by the lower
eigenvalue being reasonably large, indicating that no axis
along which the grey level variation is low can be found.

Multiple orientations are caused by non-opaque struc-
tured objects, e.g. in X-ray imaging, or by bifurcations, cor-
ners, crossings, etc. Multiple orientations are also ubiqui-
tous in Radon space, when sine curves of different objects
cross. We describe an approach for the simultaneous es-
timation of multiple local orientations. Our problem for-
mulation is based on a comparable approach to estimating
multiple optic flows [9, 10], which can be viewed as 3D-
orientations in space and time. We will show that multiple
orientations can be estimated by the eigensystem analysis
of a suitably extended tensor, yielding so-called mixed ori-
entation parameters. For the case of double orientation, we
separate the mixed orientation parameters into the individ-
ual orientations by analytically finding the roots of a second
degree polynomial (cf. [10, 11]).

2. ORIENTATION ESTIMATION

We briefly review the estimation of a single orientation in
a bivariate signal f(x), x

T = (x, y), characterized by an
angle θ with respect to the horizontal axis [7, 4]. Let

α(φ) = cos(φ)∂x + sin(φ)∂y , ∂x =
∂

∂x
, ∂y =

∂

∂y
(1)

denote the differential operator in the direction φ. If f(x, y)
is ideally oriented at (x, y), its derivative in the direction of
θ is zero, i.e.

α(θ)f(x) = v
T∇f = 0, v

T = (cos θ, sin θ) = v
T (θ)

(2)
Excluding the case of a (locally) constant signal, this is a
necessary and sufficient condition, which, when met for θ,
is also met for θ ± π. We therefore restrict θ to lie within
(−π/2, π/2]. Practically, local orientation is evaluated over
a local neighbourhood Ω, within which it is assumed to be
constant. Minimizing the square error of condition (2) with



respect to the angle yields

θ = min
φ

Q(φ) = min
φ

{
∫

Ω

(

v(φ)T∇f
)2

dΩ

}

with v
T
v = 1 (3)

Q(φ) is a measure of the variation of f(x) in the direction
φ. (In practice, the integrand in eq. (3) is often weighted
by a function w(x) emphasizing the central pixels in Ω, and
with a continuous roll-off towards its borders. Since this
weighting does not influence our considerations, we drop it
for ease of notation.) Q(φ) can be rewritten to

Q(φ) = v
T
Tv, v

T
v = 1 (4)

with the 2 × 2 tensor T being given by the tensor product

T =

∫

Ω

∇f (∇f)
T

dΩ =

∫

Ω

[

f2
x fxfy

fxfy f2
y

]

dΩ

=

∫

Ω

∇f ⊗∇fdΩ (5)

Minimizing the composite criterion

L(v) = v
T
Tv + λ(vT

v − 1) (6)

is equivalent to finding v such that

Tv = λv with v
T
v = 1 (7)

i.e. finding the normalized eigenvector of T corresponding
to the lower eigenvalue λ. Note that v(θ) is then uniquely
determined up to a sign, which in turn is determined by the
constraint θ ∈ (−π/2, π/2]. The minimum average varia-
tion of f(x) over Ω then is

Q(θ) = v
T
Tv = v

T λv = λ (8)

If f(x) is ideally oriented in Ω, we have

α(θ)f(x) = 0 ∀x ∈ Ω (9)

and thus λ = 0, or rank(T) = 1. Denoting the Fourier
transform of f(x) taken over Ω by F (ω), where ω =
(ωx, ωy)

T , (9) becomes in the spectral domain

v
T (θ)ωF (ω) = 0 (10)

i.e. F (ω) must be zero everywhere except on the line
v

T ω = 0. F (ω) then is a Dirac distribution along v
T ω = 0.

3. MULTIPLE ORIENTATION ESTIMATION

Let us now assume a signal f(x) being composed from N
oriented and non-opaque subsignals fi(x), i = 1, . . .N ,
according to

f(x) =

N
∑

i=1

fi(x), with α(θi)fi(x) = 0 ∀x ∈ Ω (11)

where θi is the orientation of fi. Excluding the case of one
or more subsignals being constant, we have

f(x) =
N

∑

i=1

fi(x), with α(θi)fi(x) = 0

⇔ α(θN ) . . . α(θ1)f(x) = 0 (12)

With Fi(ω) denoting the Fourier transform of fi(x) over Ω,
and v

T
i = (cos θi, sin θi), we obtain in the spectral domain

α(θN ) . . . α(θ1)f(x) = 0 ◦−• F (ω) ·

N
∏

i=1

(vT
i ω) = 0 (13)

that is, the local spectrum F (ω) of f(x) must be zero except
over the lines v

T
i ω = 0.

For the case of two subsignals, we have N = 2, and this
framework becomes

f(x) = f1(x) + f2(x), α(θ1)f1(x) = α(θ2)f2(x) = 0

⇔ α(θ2)α(θ1)f(x) = 0 (14)

We rewrite the lower row as the inner product a
T
df = 0,

where

a
T = (a, b, c) = (cos θ1 cos θ2, sin(θ1 + θ2), sin θ1 sin θ2)

(15)
and

df = (fxx, fxy, fyy)
T (16)

The components of the vector a are the so-called mixed
orientation parameters formed from the orientation vector
components vi = (cos θi, sin θi), i = 1, 2. In the follow-
ing, we first solve for the mixed orientation vector a, and
then decompose it into v1 and v2.

We seek a — and thus the orientation angles θ1 and θ2

— such that the summed square error

Q(a) =

∫

Ω

(α(θ1)α(θ2)f(x))
2
dΩ =

∫

Ω

(aT
df)2dΩ

(17)
evaluated over Ω is minimized. To exclude the trivial solu-
tion, we impose the constraint a

T
a = R, with R > 0 (the

precise value of R plays no role in the following discussion).
The minimization functional then becomes

L(a) = a
T
T2a + λ(aT

a − R) (18)

where the tensor T2 is computed from the observed image
signal by

T2 =

∫

Ω





f2
xx fxxfxy fxxfyy

fxyfxx f2
xy fxyfyy

fxxfyy fxyfyy f2
yy



 dΩ

=

∫

Ω

df ⊗ dfdΩ (19)



The solution then is

T2a = λa with a
T
a = R (20)

where a is the eigenvector corresponding to the lowest
eigenvalue λ of T2. In the case of two ideal orientations,
T2 is of rank two, and λ = 0.

The mixed orientation vector a can be regarded as a full
— albeit implicit — description of the two orientations in
the neighbourhood Ω. This description could be used as a
corner feature for, e.g., corner tracking. Explicit multiple
orientation analysis, however, requires decomposition of a

into the sought orientations θ1 and θ2. Here, we describe an
analytical and numerically very stable method. Let

v
T
i = (cos θi, sin θi) = (vx

i , vy
i ) (21)

for i = 1, 2. Eq. (15) then becomes

a
T = (a, b, c) = (vx

1 vx
2 , vx

1 vy
2

+ vy
1
vx
2 , vy

1
vy
2
) (22)

Building a 2 × 2-matrix M according to

M =

[

vx
1 vx

2 vx
1 vy

2

vy
1
vx
2

vy
1
vy
2

]

=

[

a z1

z2 c

]

(23)

we see that its first and second row encode θ2 by vx
1v

T
2 and

vy
1
v

T
2

, respectively, while its columns specify θ1 by vx
2
v1

and vy
2
v1. The elements on the main diagonal of M are

directly given by a. The elements z1 and z2 on the counter
diagonal can be found as follows: First, observe that z1z2 =
ac, and z1 + z2 = b. Therefore, z1 and z2 are simply the
roots of the polynomial

P (z) = (z − z1)(z − z2) = z2 − bz + ac (24)

which is fully specified by the mixed orientation vector a.
Since v

T
i vi = 1, i = 1, 2,

v2 =
(a, z1)

T

√

a2 + z2
1

=
(z2, c)

T

√

z2
2

+ c2
(25)

and similarly for v1. The angle θ2 then is

θ2 = arctan
(z1

a

)

= arctan

(

c

z2

)

(26)

which lies in (−π/2, π/2]. Alternatively, one might wish to
use both rows of M for increased robustness and numerical
stability. Denoting the first and second row of M by l

T
1

and
l
T
2

, respectively, we find for v2

v2 =
||l1||l1 + ||l2||l2
||l1||2 + ||l2||2

(27)

if l
T
1 l2 ≥ 0, and

v2 =
||l1||l1 − ||l2||l2
||l1||2 + ||l2||2

(28)

otherwise. To find v1, we replace in these expressions the
rows of M by its columns.

4. RESULTS

Fig. 1 shows two oriented patterns f1(x) and f2(x) super-
imposed to form the image f(x) = f1(x) + f2(x), and
the orientations estimated by our algorithm. For reasons
of clarity, the orientations are represented by sparse vector
maps. The discrete approximations to the derivatives were
calculated by the 3 × 3 Prewitt filter kernels, and the in-
tegration over Ω was realized as a 5 × 5 moving average.
The good agreement between true and estimated orienta-
tions is already visually evident. A more quantitative as-
sessment of the estimation accuracy is possible by calculat-
ing α(θ1)f(x), where θ1 is the estimate of the orientation
of f1(x). If this estimate is correct, α(θ1)f1(x) = 0, i.e.
f1(x) is “nulled” out. Thus, α(θ1)f(x) = α(θ1)f2(x).
This residual is a linear filtered version of f2(x), which
must have the same orientation as f2(x). Examining the
left-hand side of Fig. 2 shows that indeed only a pattern
with orientation −π/4 remains. The converse is shown on
the right-hand side for α(θ2)f(x). Apart from orientation
estimation, the framework hence also allows to separate the
detected oriented patterns modulo a convolution.

For a more detailled error analysis, we changed the ori-
entations of the patterns in Fig. 1 in steps of 10 degrees,
and measured the root mean square error of the estimated
angles for each pair of orientations. Fig. 3 shows the mea-
sured RMSE in degrees over orientations. The RMSE is
lowest when the orientations are aligned with the image grid
(0, 45 and 90 degrees), and largest in between. It is hence
obviously dominated by sampling effects rather than by the
angular differences of the orientations. Even in the worst
case, the maximum RMS error is less than 4 degrees.

Fig. 1. Left: Synthetic image of size 62 × 62 pixels with
two superimposed orientations of π/2 and −π/4. Right:
Estimated orientations represented by vectors.

5. DISCUSSION

We have described a two-step approach towards estimating
multiple overlaid orientations. First, we estimate a mixed
orientation vector by analysing the eigensystem of a tensor.



Fig. 2. Results of “nulling” by α(θ1)f(x) (left) and
α(θ2)f(x) (right). For details see text.
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Fig. 3. Root mean square error of estimated angles over
true angle pairs. For better visualization, the error surface is
interpolated between the measurements.

The mixed orientation vector is then decomposed into the
sought orientations by finding the roots of a polynomial. For
ease of notation and because of limited space, we focussed
on two overlaid orientations in two dimensions. While the
tensor eigensystem in Eqs. (19) and (20) can straightfor-
wardly be generalized towards both more orientations and
more dimensions, the separation will become considerably
more complex unless one restricts oneself to either two di-
mensions with three or more orientations, or to two orienta-
tions in three or more dimensions.

As in the single orientation case, where the involved
2 × 2-tensor T is of rank 1 when indeed only a single ori-
entation is present, the 3 × 3-tensor T2 in eq. (19) for the
double orientation case is rank deficient (rank(T2) = 2)
when indeed only two orientations exist. The eigenvalues
of the corresponding tensor can therefore be used as a mea-
sure of confidence for the number of orientations tested, and
hierarchical algorithms testing successively for one, two or

more orientations be derived.
Our experiments show that even simple gradient filters

perform reasonably well, nonetheless we intend to evaluate
the estimation accuracy and noise resistance of other, opti-
mized gradient filters, like [12, 13] in the near future. An-
other topic for future research efforts is regularization of the
mixed orientation parameters (cf. for motion [14]). Finally,
our framework can also be extended towards multispectral
images, based on the tensor defined in [15] for describing
gradients in, e.g., color images.
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