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Abstract 

Human-robot interfaces for interacting with hundreds of 
autonomous robots must be very different from single-robot 
interfaces.  The central design challenge is developing 
techniques to maintain, program, and interact with the 
robots without having to handle them individually.  This 
requires robots that can support hands-free operation, which 
drives many other aspects of the design. 

This paper presents the design philosophy and practical 
experience with human-robot interfaces to develop, debug, 
and evaluate distributed algorithms on the 112-robot iRobot 
Swarm.  These human-robot interaction (HRI) techniques 
fall into three categories: a physical infrastructure to 
support hands-free operation, utility software for 
centralized development and debugging, and carefully 
designed lights, sounds and movement that allow the user 
to interpret the inner workings of groups of robots without 
having to look away or use special equipment.  The end 
result is a useable Swarm, with develop-run-debug cycle 
times approaching that of a simulation. 

1 Introduction 
The task of interacting with hundreds of autonomous 
robots presents unique challenges for the user interface 
designer.  Traditional graphical user interfaces, data logs, 

and even standard power switches fail to provide the user 
with a practical, efficient interface.  The core issue is one 
of scale: in a system of n robots, any task that has to be 
done to one robot must be done to the remaining n - 1.  Our 
solution is a swarm that can operate largely without 
physical interaction, using an infrastructure that allows 
remote power management and autonomous recharging, 
and has software for centralized user input and techniques 
for global swarm output. 

Section 2 describes the hardware required for hands-free 
operation.  This includes the chargers, navigational 
beacons, and the power circuitry on the robots.  Section 3 
discusses the centralized command, control, and data 
collection software.  Parts of this suite are inspired by 
video games in which the user commands a large army of 
individual units.  Section 4 describes our approach of using 
lights sounds, and behaviors on individual robots as a 
primary output channel.  This allows the user to ascertain 
the inner workings of a single robot, small groups of 
robots, or even the entire swarm, without having to look at 
a computer screen. 

2 Hardware for Hands-Free Operation 
The Swarm infrastructure components, shown in Figure 2, 
provide the physical resources the robots need to keep 
themselves running.  These include chargers, navigational 
beacons, and a semi-automated test stand.  The charging 
stations are the most important of these components, as 
they allow the robots to autonomously recharge their 
batteries. 

The long-range navigation beacons are designed to help 
guide the robots to their chargers from anywhere in their 
workspace.  In practice, we have found that it is easier to 
provide a multi-hop communications route, and hence a 
navigational path, to the chargers using the robot’s local 
communications system (Intanagonwiwat 2000, McLurkin 
2004).  This eliminates the need to set up any additional 
hardware.  The SwarmBot’s bump skirts provide the robust 
low-level obstacle avoidance needed to allow both the 
navigation and docking behaviors to run successfully. 

The SwarmBot’s power management circuitry has four 
modes of operation: on, standby, off, and battery-
disconnect.  The standby mode allows the user to power-on 
the robots remotely from a “gateway robot” (described in 
the next section).  Once on, the robots can be remotely 

 
Figure 1: The iRobot Swarm is composed of 112 individual 
robots that work together to accomplish group goals.  The robots 
autonomously dock with the charging stations in the top right of 
the figure.  Long-range navigation is provided by the beacon at 
the middle left of the image.  See Figure 2 for detailed 
information about the support hardware. 



powered down via the same interface.  This ability 
supports the sporadic nature of software development; the 
robots remain on during periods of active progress, but can 
be easily powered down to conserve batteries when a 
difficult bug slows the pace.  This reduces wear on the 
batteries, and allows the user to maintain a particular 
physical arrangement of robots for testing far longer than if 
the robots were left on continuously.  The battery-
disconnect mode makes the robots safe for shipping and 
storage. 

The Swarm, or subsets of it, often travel around the lab 
or around the country.  The travel cases shown in Figure 2 
make transporting the robots safe and easy.  Each case 
contains 18 robots and 2 chargers, a ratio that supports 
continuous operation. 

The most critical hands-free operation is remote 
programming.  Our approach is a single-hop broadcast 
algorithm similar to those presented by Stathopoulos and 
Reijers (Stathopoulos, 2003, N. Reijers 2003), but simpler 
and easier to implement. 

First, new software is downloaded to one robot via the 
serial port.  This “gateway robot” computes a 32-bit CRC 
for each segment of memory, and then broadcasts these 
CRCs to the entire swarm via radio.  All the other robots 
compare the CRC’s of their memory segments to the ones 
they just received, and flag the appropriate segments for 
update.  The gateway robot then queries all other robots in 
sequence, retransmitting code segments as necessary.  
Robots who are not being actively queried snoop on the 
channel to opportunistically receive segments they have 
flagged. 

The resulting download is quite efficient.  A 40-robot 
swarm can be reprogrammed with a 100-kilobyte 
application in under 30 seconds.  This significantly lowers 
the barriers to testing new software, or polishing existing 
behaviors.  For example, because the programming cycle is 
so painless, it is common to change only a single constant 
in the source code and re-download. 

The downside of this simplified approach is the single-
hop network requirement, as robots that are too far from 
the user will not be reprogrammed.  However, in a typical 
laboratory environment, the radio’s range is sufficient to 
reach all the robots, or the robots can be recalled to the 
home base for reprogramming.   

3 Centralized User Interfaces 
Centralized input allows the swarm to be controlled by a 
single user, using the gateway robot to provide 
connectivity between the user’s computer and the Swarm.  
The VT100 terminal display shown in Figure 3 allows the 
user to send commands to an individual robot or to the 
entire Swarm.  Simple graphical output is also possible, but 
limitations of the VT100 display make this interface best 
for input. 

Commercial-off-the-shelf video game controllers are 
also an excellent hardware input device for some 
applications.  In particular, the controllers designed for the 
Sony PlayStation are high quality, and simple to interface 
to the robots.  This approach allows one or more users to 
directly control individual robots, and trough group 
behaviors, the entire swarm.  These controllers are ideal for 
demonstrations and classroom lessons. 

The graphical user interface shown in Figure 4 displays 
real-time telemetry data, detailed internal state, local 
neighbor positioning, and global robot positioning.  Its 
design is inspired by the graphical user interfaces (GUI) of 

        
Figure 2: Working with a large swarm of robots requires them to be as self-sufficient as possible.  Left: Chargers allow robots to 
dock and recharge autonomously.  Middle Left: Semi-automated testing allows initial calibration and quick diagnosis of problems.  
Middle Right: Long-range ISIS beacons aid navigation.  Right: Each travel case hold 18 robots and two chargers. 

 
Figure 3: A VT100 console interface allows a single user to issue 
commands to an individual robot or the entire swarm.  It can also 
display simple graphics output in real-time.  The example above 
is displaying the position of the local Delaunay neighbors of the 
gateway robot (red squares at the end of the black ”lines”), and 
the resulting Voronoi cell (green asterisks).  



real-time strategy video games such as StarCraft and 
WarCraft (Blizzard, 1998).  Games like these challenge the 
user to direct an army of individual units to victory.  
Although it is common to have over 100 units on each 
team, elegant user interfaces make it simple for the user to 
control individual units, groups, or the entire army. 

Attempts to implement this style of centralized graphical 
user interface (GUI) on a physical swarm have met with 
mixed success, as it is often easier to type commands into 
the console or to manually move the robots to the desired 
arrangement.  However, these user interface metaphors are 
highly effective for centralized data collection and display.  
The gateway robot collects telemetry data and application-
specific data from individual robots; this data is then 
passed to the GUI, and displayed in many different 
formats.  The image in Figure 4 shows the swarm view 
with a single robot moving towards two waypoints.  This 
GUI is currently under active development, and we plan to 
add many features and annotations to enhance the 
visualization of swarm data. 

The problem of keeping the GUI and robot code in sync 
is a development challenge.  Our solution is to design the 
GUI to function like a specialized terminal, receiving most 
of its commands from the robots.  Then, as the robot’s 
code changes, the GUI can support different software with 
little or no modifications. 

4 Global User Output 
When developing and debugging group behaviors, it is 
critical to monitor both the actions and the internal 
program state of the robots simultaneously.  Displaying the 
internal state on monitors requires the user to continuously 
alternate between watching the robots and the screen.  To 
solve this problem, we make the internal state readily 
observable by looking at the robot itself.  Consider the 
SwarmBot shown in Figure 5.  Each robot is a 12 cm 
square, so small text displays are useless when viewed 
from a distance.  So we install large LEDs (lights) and an 
audio system on each robot, allowing them to 
communicate with users in a language we have 
affectionately dubbed “Swarmish”. 

4.1 Swarmish LEDs 
Each robot has a red, green, and blue LED on top that 

can be programmed to blink in several patterns.  This is our 
primary behavior-level debugging interface on the robots.  
Patterns that use one LED alone or all the LEDs together 
seem to work best, as patterns involving multiple lights 
communicating independent information can be difficult to 
read quickly. 

We have settled on two intensities, bright and dim, and 
two wave patterns, a square wave and a semi-sinusoidal 
wave.  The two patterns are only distinguishable at lower 
frequencies, which gives us 12 distinct single-LED patterns 
that can be read by an experienced user.  The absolute 
minimum time to read square patterns is ½ the period of 
the second-lowest frequency, which is 533 milliseconds.  
The semi-sinusoidal patterns can be read slightly faster 

 
Figure 4: The SwarmCraft centralized GUI is inspired by  real-
time strategy video games and graphical software debuggers.  
The tree view on the right displays the available telemetry for all 
the robots in the swarm.  The view on the left displays global 
positioning, annotated with debugging information.  This view 
shows a test with motion waypoints and a velocity vector.  
Individual robot windows can be opened to display telemetry and 
neighbors of a single robot.  A “quick graph” function allows the 
selected datum to be graphed in real-time.  The GUI only draws 
what the robots tell it to, allowing it to remain unchanged as the 
Swarm’s software develops. 

   

 
Figure 5: The iRobot SwarmBot is designed from the ground up 
for distributed algorithm development.  The robots use an infra-
red inter robot communications system (ISIS) for local 
communications and positioning.  About one third of the robot’s 
hardware (charger contacts, user interface switches, serial ports, 
audio system, behavior LEDs, and radio) is used exclusively for 
human-robot interaction and hands-free operation. 



because the user can infer the frequency from the slope.  
Besides the square and semi-sinusoidal patterns from 
above, the four all-LED patterns also include two patterns 
that cycle back and forth through all the lights, either with 
smooth or sharp transitions. 

All these variations produce 108 common patterns, each 
of which can be read in about ½ second.  In an actual 
application, similar behaviors and states are grouped into 
single colors, leaving many patterns unused.  Even with 
this limitation, the level of expressiveness is sufficient for 
debugging a new behavior or displaying the top-level state 
of an application. 

For example, an LED assignment for an application that 
arranges the robots in order (a physical bubble sort) is 
given in Table 1 below: 

 
Application Behavior  color, frequency, pattern, dimmer 

lowest robot blue low-freq sine bright 
intermediate robot, unsorted, 
moving towards lower robots 

blue hi-freq square bright 

intermediate robot, sorted,  
in position 

green low-freq sine bright 

intermediate robot, sorted, 
not in position 

green hi-freq square bright 

intermediate robot, unsorted, 
moving towards higher robots 

red hi-freq square bright 

highest robot red low-freq sine bright 
gateway robot blue hi-freq square dim 

Table 1. Swarmish LED assignments for a bubble sort program. 
 

In this example, “low-freq sine” translates to “complete”, 
“hi-freq square” means “in motion”, blue lights are related 
to the lowest robot, and red to the highest.  Careful 
grouping of colors and patterns allow fairly complicated 
software to be readily understandable.  We do not program 
lights to be all off or steady on, as either of these patterns is 
impossible to distinguish from a software crash. 

A current limitation of this approach is that the light 
patterns are programmed into the software – to change the 
information displayed requires a swarm download.  Future 
work will allow the user to select the information to be 
displayed from the command line or GUI. 

4.2 Swarmish Audio 
The LEDs offer detailed information about an individual 
robot.  In contrast, the audio system can give the user an 
overview of the activities of the entire swarm, and can be 
monitored while looking elsewhere.  This is a somewhat 
nostalgic approach: many veteran software engineers 
reminisce fondly of a time when they could debug 
programs by listening to the internal operations of their 
computers on nearby radios.  Once the user learned what 
normal execution sounded like, deviations were quickly 
noticed, focusing attention on the offending part of the 
program.  This resurrected approach to debugging has 
proven to be very effective on the Swarm, and our modern 
interpretation is discussed in this section. 

Each robot has a 1.1 watt audio system than can produce 
a subset of the general MIDI instruments.  This allows the 

Swarm to play any MIDI file, but we have found that 
single notes work best for debugging.  There are four 
parameters to vary per note: instrument, pitch, duration, 
and volume.  Care must be taken to blend these selections 
into a group composition that is intelligible.  Good note 
selections for correctly operating programs produce 
chords, tempos, and rhythms.  Once a user has become 
attuned to variations in these elements (especially tempo 
and rhythm), he or she can spot bugs from across the room 
in seconds that would only be apparent after careful 
analysis of the combined execution traces from all the 
robots. 

5 Limitations and Summary 
There are many factors to consider in multi-robot HRI 

design: ease of use, user workload, information flow, 
software maintenance, and robot maintenance.  The GUI 
display allows visualization of internal state, but it can 
become cluttered if not designed properly.  The Swarm 
contains a great deal of data, the task of organizing it for 
the user requires much future work.  The Swarmish lights 
and sounds are thought-intensive to design, and can only 
convey limited data.  Moving towards augmented-reality 
visualizations (M. Daily 2003), will allow telemetry to be 
superimposed on the robots, but this approach requires the 
user to wear specialized hardware.  Our current approaches 
are practical and usable, but much work to be done on 
Human-Swarm Interaction remains. 
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