
Speaking Swarmish: Human-Robot Interface Design for Large Swarms
of Autonomous Mobile Robots

James McLurkin1, Jennifer Smith2, James Frankel3, David Sotkowitz, David Blau4, Brian Schmidt5

{jamesm1, scrbl4, bschmidt5}@csail.mit.edu
MIT Computer Science and Artificial Intelligence Lab

Cambridge, MA 02139

{jsmith2,jfrankel3}@irobot.com
iRobot Corporation

63 South Ave, Burlington, MA 01803

Abstract

Human-robot interfaces for interacting with hundreds of
autonomous robots must be very different from single-robot
interfaces. The central design challenge is developing
techniques to maintain, program, and interact with the
robots without having to handle them individually. This
requires robots that can support hands-free operation, which
drives many other aspects of the design.

This paper presents the design philosophy and practical
experience with human-robot interfaces to develop, debug,
and evaluate distributed algorithms on the 112-robot iRobot
Swarm. These human-robot interaction (HRI) techniques
fall into three categories: a physical infrastructure to
support hands-free operation, utility software for
centralized development and debugging, and carefully
designed lights, sounds and movement that allow the user
to interpret the inner workings of groups of robots without
having to look away or use special equipment. The end
result is a useable Swarm, with develop-run-debug cycle
times approaching that of a simulation.

1 Introduction
The task of interacting with hundreds of autonomous
robots presents unique challenges for the user interface
designer. Traditional graphical user interfaces, data logs,

and even standard power switches fail to provide the user
with a practical, efficient interface. The core issue is one
of scale: in a system of n robots, any task that has to be
done to one robot must be done to the remaining n - 1. Our
solution is a swarm that can operate largely without
physical interaction, using an infrastructure that allows
remote power management and autonomous recharging,
and has software for centralized user input and techniques
for global swarm output.

Section 2 describes the hardware required for hands-free
operation. This includes the chargers, navigational
beacons, and the power circuitry on the robots. Section 3
discusses the centralized command, control, and data
collection software. Parts of this suite are inspired by
video games in which the user commands a large army of
individual units. Section 4 describes our approach of using
lights sounds, and behaviors on individual robots as a
primary output channel. This allows the user to ascertain
the inner workings of a single robot, small groups of
robots, or even the entire swarm, without having to look at
a computer screen.

2 Hardware for Hands-Free Operation
The Swarm infrastructure components, shown in Figure 2,
provide the physical resources the robots need to keep
themselves running. These include chargers, navigational
beacons, and a semi-automated test stand. The charging
stations are the most important of these components, as
they allow the robots to autonomously recharge their
batteries.

The long-range navigation beacons are designed to help
guide the robots to their chargers from anywhere in their
workspace. In practice, we have found that it is easier to
provide a multi-hop communications route, and hence a
navigational path, to the chargers using the robot’s local
communications system (Intanagonwiwat 2000, McLurkin
2004). This eliminates the need to set up any additional
hardware. The SwarmBot’s bump skirts provide the robust
low-level obstacle avoidance needed to allow both the
navigation and docking behaviors to run successfully.

The SwarmBot’s power management circuitry has four
modes of operation: on, standby, off, and battery-
disconnect. The standby mode allows the user to power-on
the robots remotely from a “gateway robot” (described in
the next section). Once on, the robots can be remotely

Figure 1: The iRobot Swarm is composed of 112 individual
robots that work together to accomplish group goals. The robots
autonomously dock with the charging stations in the top right of
the figure. Long-range navigation is provided by the beacon at
the middle left of the image. See Figure 2 for detailed
information about the support hardware.

powered down via the same interface. This ability
supports the sporadic nature of software development; the
robots remain on during periods of active progress, but can
be easily powered down to conserve batteries when a
difficult bug slows the pace. This reduces wear on the
batteries, and allows the user to maintain a particular
physical arrangement of robots for testing far longer than if
the robots were left on continuously. The battery-
disconnect mode makes the robots safe for shipping and
storage.

The Swarm, or subsets of it, often travel around the lab
or around the country. The travel cases shown in Figure 2
make transporting the robots safe and easy. Each case
contains 18 robots and 2 chargers, a ratio that supports
continuous operation.

The most critical hands-free operation is remote
programming. Our approach is a single-hop broadcast
algorithm similar to those presented by Stathopoulos and
Reijers (Stathopoulos, 2003, N. Reijers 2003), but simpler
and easier to implement.

First, new software is downloaded to one robot via the
serial port. This “gateway robot” computes a 32-bit CRC
for each segment of memory, and then broadcasts these
CRCs to the entire swarm via radio. All the other robots
compare the CRC’s of their memory segments to the ones
they just received, and flag the appropriate segments for
update. The gateway robot then queries all other robots in
sequence, retransmitting code segments as necessary.
Robots who are not being actively queried snoop on the
channel to opportunistically receive segments they have
flagged.

The resulting download is quite efficient. A 40-robot
swarm can be reprogrammed with a 100-kilobyte
application in under 30 seconds. This significantly lowers
the barriers to testing new software, or polishing existing
behaviors. For example, because the programming cycle is
so painless, it is common to change only a single constant
in the source code and re-download.

The downside of this simplified approach is the single-
hop network requirement, as robots that are too far from
the user will not be reprogrammed. However, in a typical
laboratory environment, the radio’s range is sufficient to
reach all the robots, or the robots can be recalled to the
home base for reprogramming.

3 Centralized User Interfaces
Centralized input allows the swarm to be controlled by a
single user, using the gateway robot to provide
connectivity between the user’s computer and the Swarm.
The VT100 terminal display shown in Figure 3 allows the
user to send commands to an individual robot or to the
entire Swarm. Simple graphical output is also possible, but
limitations of the VT100 display make this interface best
for input.

Commercial-off-the-shelf video game controllers are
also an excellent hardware input device for some
applications. In particular, the controllers designed for the
Sony PlayStation are high quality, and simple to interface
to the robots. This approach allows one or more users to
directly control individual robots, and trough group
behaviors, the entire swarm. These controllers are ideal for
demonstrations and classroom lessons.

The graphical user interface shown in Figure 4 displays
real-time telemetry data, detailed internal state, local
neighbor positioning, and global robot positioning. Its
design is inspired by the graphical user interfaces (GUI) of

Figure 2: Working with a large swarm of robots requires them to be as self-sufficient as possible. Left: Chargers allow robots to
dock and recharge autonomously. Middle Left: Semi-automated testing allows initial calibration and quick diagnosis of problems.
Middle Right: Long-range ISIS beacons aid navigation. Right: Each travel case hold 18 robots and two chargers.

Figure 3: A VT100 console interface allows a single user to issue
commands to an individual robot or the entire swarm. It can also
display simple graphics output in real-time. The example above
is displaying the position of the local Delaunay neighbors of the
gateway robot (red squares at the end of the black ”lines”), and
the resulting Voronoi cell (green asterisks).

real-time strategy video games such as StarCraft and
WarCraft (Blizzard, 1998). Games like these challenge the
user to direct an army of individual units to victory.
Although it is common to have over 100 units on each
team, elegant user interfaces make it simple for the user to
control individual units, groups, or the entire army.

Attempts to implement this style of centralized graphical
user interface (GUI) on a physical swarm have met with
mixed success, as it is often easier to type commands into
the console or to manually move the robots to the desired
arrangement. However, these user interface metaphors are
highly effective for centralized data collection and display.
The gateway robot collects telemetry data and application-
specific data from individual robots; this data is then
passed to the GUI, and displayed in many different
formats. The image in Figure 4 shows the swarm view
with a single robot moving towards two waypoints. This
GUI is currently under active development, and we plan to
add many features and annotations to enhance the
visualization of swarm data.

The problem of keeping the GUI and robot code in sync
is a development challenge. Our solution is to design the
GUI to function like a specialized terminal, receiving most
of its commands from the robots. Then, as the robot’s
code changes, the GUI can support different software with
little or no modifications.

4 Global User Output
When developing and debugging group behaviors, it is
critical to monitor both the actions and the internal
program state of the robots simultaneously. Displaying the
internal state on monitors requires the user to continuously
alternate between watching the robots and the screen. To
solve this problem, we make the internal state readily
observable by looking at the robot itself. Consider the
SwarmBot shown in Figure 5. Each robot is a 12 cm
square, so small text displays are useless when viewed
from a distance. So we install large LEDs (lights) and an
audio system on each robot, allowing them to
communicate with users in a language we have
affectionately dubbed “Swarmish”.

4.1 Swarmish LEDs
Each robot has a red, green, and blue LED on top that

can be programmed to blink in several patterns. This is our
primary behavior-level debugging interface on the robots.
Patterns that use one LED alone or all the LEDs together
seem to work best, as patterns involving multiple lights
communicating independent information can be difficult to
read quickly.

We have settled on two intensities, bright and dim, and
two wave patterns, a square wave and a semi-sinusoidal
wave. The two patterns are only distinguishable at lower
frequencies, which gives us 12 distinct single-LED patterns
that can be read by an experienced user. The absolute
minimum time to read square patterns is ½ the period of
the second-lowest frequency, which is 533 milliseconds.
The semi-sinusoidal patterns can be read slightly faster

Figure 4: The SwarmCraft centralized GUI is inspired by real-
time strategy video games and graphical software debuggers.
The tree view on the right displays the available telemetry for all
the robots in the swarm. The view on the left displays global
positioning, annotated with debugging information. This view
shows a test with motion waypoints and a velocity vector.
Individual robot windows can be opened to display telemetry and
neighbors of a single robot. A “quick graph” function allows the
selected datum to be graphed in real-time. The GUI only draws
what the robots tell it to, allowing it to remain unchanged as the
Swarm’s software develops.

Figure 5: The iRobot SwarmBot is designed from the ground up
for distributed algorithm development. The robots use an infra-
red inter robot communications system (ISIS) for local
communications and positioning. About one third of the robot’s
hardware (charger contacts, user interface switches, serial ports,
audio system, behavior LEDs, and radio) is used exclusively for
human-robot interaction and hands-free operation.

because the user can infer the frequency from the slope.
Besides the square and semi-sinusoidal patterns from
above, the four all-LED patterns also include two patterns
that cycle back and forth through all the lights, either with
smooth or sharp transitions.

All these variations produce 108 common patterns, each
of which can be read in about ½ second. In an actual
application, similar behaviors and states are grouped into
single colors, leaving many patterns unused. Even with
this limitation, the level of expressiveness is sufficient for
debugging a new behavior or displaying the top-level state
of an application.

For example, an LED assignment for an application that
arranges the robots in order (a physical bubble sort) is
given in Table 1 below:

Application Behavior color, frequency, pattern, dimmer

lowest robot blue low-freq sine bright
intermediate robot, unsorted,
moving towards lower robots

blue hi-freq square bright

intermediate robot, sorted,
in position

green low-freq sine bright

intermediate robot, sorted,
not in position

green hi-freq square bright

intermediate robot, unsorted,
moving towards higher robots

red hi-freq square bright

highest robot red low-freq sine bright
gateway robot blue hi-freq square dim

Table 1. Swarmish LED assignments for a bubble sort program.

In this example, “low-freq sine” translates to “complete”,
“hi-freq square” means “in motion”, blue lights are related
to the lowest robot, and red to the highest. Careful
grouping of colors and patterns allow fairly complicated
software to be readily understandable. We do not program
lights to be all off or steady on, as either of these patterns is
impossible to distinguish from a software crash.

A current limitation of this approach is that the light
patterns are programmed into the software – to change the
information displayed requires a swarm download. Future
work will allow the user to select the information to be
displayed from the command line or GUI.

4.2 Swarmish Audio
The LEDs offer detailed information about an individual
robot. In contrast, the audio system can give the user an
overview of the activities of the entire swarm, and can be
monitored while looking elsewhere. This is a somewhat
nostalgic approach: many veteran software engineers
reminisce fondly of a time when they could debug
programs by listening to the internal operations of their
computers on nearby radios. Once the user learned what
normal execution sounded like, deviations were quickly
noticed, focusing attention on the offending part of the
program. This resurrected approach to debugging has
proven to be very effective on the Swarm, and our modern
interpretation is discussed in this section.

Each robot has a 1.1 watt audio system than can produce
a subset of the general MIDI instruments. This allows the

Swarm to play any MIDI file, but we have found that
single notes work best for debugging. There are four
parameters to vary per note: instrument, pitch, duration,
and volume. Care must be taken to blend these selections
into a group composition that is intelligible. Good note
selections for correctly operating programs produce
chords, tempos, and rhythms. Once a user has become
attuned to variations in these elements (especially tempo
and rhythm), he or she can spot bugs from across the room
in seconds that would only be apparent after careful
analysis of the combined execution traces from all the
robots.

5 Limitations and Summary
There are many factors to consider in multi-robot HRI

design: ease of use, user workload, information flow,
software maintenance, and robot maintenance. The GUI
display allows visualization of internal state, but it can
become cluttered if not designed properly. The Swarm
contains a great deal of data, the task of organizing it for
the user requires much future work. The Swarmish lights
and sounds are thought-intensive to design, and can only
convey limited data. Moving towards augmented-reality
visualizations (M. Daily 2003), will allow telemetry to be
superimposed on the robots, but this approach requires the
user to wear specialized hardware. Our current approaches
are practical and usable, but much work to be done on
Human-Swarm Interaction remains.

Acknowledgements
The iRobot Swarm Project was funded by DARPA IPTO under
contracts SPAWAR N66001-99-C-8513 and SMDC DASG60-
02-C-0028.

McLurkin is supported by a grant from Boeing Corporation.

References
M. Daily, Y. Cho, K. Martin, D. Payton, “World Embedded
Interfaces for Human-Robot Interaction”. Proceedings of the
36th IEEE Hawaii International Conference on System Sciences,
2003

C. Intanagonwiwat, R. Govindan and D. Estrin. “Directed
diffusion: A scalable and robust communication paradigm for
sensor networks”. In Proc. Sixth Annual International
Conference on Mobile Computing and Networks, 2000.

J. McLurkin. “Stupid Robot Tricks: A Behavior-Based
Distributed Algorithm Library for Programming Swarms of
Robots”. S.M Thesis, Massachusetts Institute of Technology.
2004.

N. Reijers, K. Langendoen. “Efficient Code Distribution in
Wireless Sensor Networks”. ACM international conference on
Wireless Sensor Networks and Applications, 2003

T. Stathopoulos, T. McHenry, J. Heidemann, D. Estrin. “A
Remote Code Update Mechanism for Wireless Sensor
Networks” CENS Technical Report # 30. Center for Embedded
Networked Sensing, 2003

