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execution time. Furthermore, we experimentally determined
that the guide tree stage requires more than 5% of sequential
execution time when aligning a large set (500–1000 sequences)
of very short sequences (10–100 amino acids) [8]. For this
reason we focus our efforts on optimizing and parallelizing
the pairwise alignment and progressive alignment stages. Note,
however, that the second stage (guide tree construction) is also
amenable to parallelization [9, 10].

3.1. Code structure of pairwise alignment

The majority of execution time of pairwise alignment is
spent in three functions: forward_pass(), which consists
of a forward-iterating loop nest, reverse_pass(), which
consists of a backward-iterating loop nest, and diff(), a
recursive function (Fig. 1). After converting diff() to an
iterative function, we have obtained three loop nests that are
data-dependent on one another. The forward loop nest is most
important for execution time as it iterates across the full n × m

iteration space, where n and m are input-dependent parameters.
The backward loop nest takes less execution time than the
forward loop nest as the latter reduces the iteration space of the
backward loop nest. Finally, the diff() loop nest performs
workless by an order of magnitude, and so we do not optimize
it strongly.

FIGURE 1. Pseudo-code of the pairwise alignment stage.

FIGURE 2. Pseudo-code of the progressive alignment stage.

The forward and backward loop nests contain indirect
accesses to a substitution matrix, which results in random
accesses and non-vectorizable code. This limits the speedup
obtained by vectorizing this code.

3.2. Code structure of progressive alignment

The code structure of progressive alignment bears strong
similarity to the code structure of pairwise alignment (Fig. 2).
The majority of execution time of progressive alignment is spent
in three loop nests: a forward-iterating loop nest, a backward-
iterating loop nest and a loop nest operating on intermediate
values from the other two loop nests.

In contrast to pairwise alignment, the forward loop nest does
not compute bounds on the iteration space of the backward loop
nests. As such, the forward and backward loop nests are about
equally time-consuming. Furthermore, they may be executed
in parallel. Again, the third loop nest performs workless by an
order of magnitude.

The forward and backward loop nests perform many calls to
the function prfscore(). This function computes a vector
dot-product of two 26-element arrays.

4. PORTING METHODOLOGY

Porting code from a general-purpose processor to the Cell BE
processor takes many steps covering all aspects of the program:
thread-level parallelism, data-level parallelism, data layout,
code partitioning etc. Hence, a good methodology is necessary
to make decisions on all of these topics in the correct order.

The Computer Journal, Vol. 53 No. 6, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 



Accelerating Multiple Sequence Alignment with the Cell BE Processor 817

4.1. Methodology for porting code

In our work, we have used the following methodology to port
sequential, platform-independent code to the SPUs.

(i) The first step is to identify loop-level, task-level
and data-level parallelism in the hot code regions.
Knowledge of all existing parallelism is paramount to
coding for the Cell BE as it exploits parallelism on all
levels.

(ii) Based on the exploited parallelism, we select the code
that is run on an SPU. We identify work packages that
indicate the work requested by the SPU code.2 Code is
inserted to send and receive work packages between the
PPU and the SPU to initiate computations and to flag
the termination of computations.

(iii) For each piece of code executing on an SPU, we
determine the data structures that are accessed by that
code. Each data structure either resides permanently
in the local store, is cached or is streamed in or out
of the local store. The particular choice of allocation
of data structures depends on the amount of available
memory and the access patterns (regular or random
access). In general, smaller fixed-size data structures
reside permanently in the local store while large data
structures, or data structures that may become large
depending on program parameters, are streamed or
cached. Finally, the allocation of data structures in the
main memory must be changed in order to simplify
DMA, e.g. by satisfying alignment restrictions.

(iv) The use of recursive functions on the SPUs is
problematic as (a) the size of the local store is quite
limited and (b) overflowing the program stack results in
unpredictable behavior, ranging from program crashes
to erroneous results. Therefore, we rewrite recursive
functions as iterative functions using the method of [11].
Hereby, the stack of recursive function calls is explicitly
managed in user code and we can (a) check for stack
overflow and (b) minimize stack size by specializing it
to the algorithm at hand.

After these transformations on the code, the code should
run correctly, but probably slowly. The next steps in the
methodology concern performance optimizations.

(i) Until now, DMA operations on streamed data structures
are initiated when they are needed. In this step, DMA
get operations are initiated ahead of time (double
buffering) by fetching the elements needed in later loop
iterations. This transformation should take future code
transformations into account, i.e. if a loop iteration is
bound to handle N different streamed elements at a time,
then DMA get operations should run ahead of the loop
by at least N streamed elements.

2Work packages can be a set of function arguments to a function moved to
the SPU, a slice of loop indices if loops are split across multiple SPUs, etc.

(ii) Remove control flow to the extent possible, especially
if-then-else control flow, by using the spu_cmpxx()
and spu_sel() primitives.

(iii) Loop optimizations are very powerful transformations
to expose data-level parallelism. In our study, we have
applied loop splitting, loop interchange, loop skewing
and loop unrolling to facilitate vectorization. When the
loop structure is in an appropriate form, vectorization
becomes a straightforward optimization.

(iv) The resulting code may still contain many unaligned
memory accesses. In our case, most of these unaligned
memory accesses are due to the loop structure. We
found that applying loop unrolling allows us to remove
these unaligned memory accesses and to improve
performance.

4.2. Layout of data structures

A number of precautions are helpful to simplify coding of DMA
transfers, minimize memory consumption and avoid unaligned
memory accesses.

Alignment and size extension: It is clear that all data structures
that are potentially accessed by the SPUs should start
at 128-byte aligned boundaries. Furthermore, it deserves
recommendation to round the size of data structures up to a
multiple of 128 bytes in order to facilitate DMA transfers. The
motivation is that DMA transfers of 128 bytes or more must be
aligned to a 128-byte boundary and they must transfer a multiple
of 128 bytes.

When array accesses are vectorized, it is beneficial to align
the accesses to a 16-byte boundary. Due to the nature of the
algorithm, we found it beneficial for some arrays to align the
element at index 1 instead of the element at index 0.

Multi-dimensional arrays: The C language forces an “array-
of-pointers” view on dynamically allocated multi-dimensional
arrays. Hereby, a programmer first allocates an array of pointers
and then allocates each row separately and stores a pointer to
it in the array of pointers. This approach requires one to load
(part of) the array of pointers in the local store.

For the Cell BE, it is much smarter to allocate all rows from
a consecutive buffer of memory, a trick that makes the array-
of-pointers redundant and simultaneously solves all alignment
requirements on the rows. This allocation scheme occupies less
memory in the local store: only the base pointer and row length
are needed to compute the start address of each row. Further-
more, unaligned scalar accesses to the array-of-pointers are
avoided. If necessary, the array-of-pointers can be reconstructed
in the main memory to avoid changes to the PPU code.

Extracting columns from multi-dimensional arrays: When a
single column from a multi-dimensional array is repeatedly
used, it may be beneficial to extract this column into a separate
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array in order to allow vectorized accesses to the data. This
transformation was beneficial for two particular columns of the
profiles used during progressive alignment.

5. IMPLEMENTATION OF CLUSTAL W ON CELL BE

An implementation of any algorithm on Cell BE requires many
code changes. The first step is to decide what code is accelerated
on the SPUs. For the pairwise alignment stage, we decided to
execute one pairwise alignment on an SPU due to the apparent
and coarse-grain parallelism between alignments. The main
loop iterating over all pairs of sequences remains on the PPU
and is adapted to perform load-balancing across SPUs. For
the progressive alignment stage, we decided to port all main
computation loops to the SPUs. The main body of thepdiff()
function remains on the PPU due to its recursive nature.

5.1. Loop optimizations

5.1.1. Complete loop unrolling
The prfscore() function contains a small loop for a vector
dot-product. The parameters to this loop, i.e. which elements are
included in the product, are constants in the program, although
they are defined as variables. We have created an optimized
version of this function in the following way. We unroll the loop
32 times and the spu_sel() primitive is used to add only the
appropriate products.We have experimented with other versions
of the code, in particular without using the select primitive, but
these versions did not speedup the code.

5.1.2. Loop skewing
The architecture of the SPUs makes it extremely beneficial to
apply loop transformations on the code such as loop unrolling,
software pipelining, vectorization etc.

Figure 3 shows the general loop structure of the loops in
the forward and backward passes in pairwise alignment and

FIGURE 3. Data dependencies between distinct iterations of the
inner loop body of the nested i-loop and j -loop. Data dependencies
between i-loop iterations are carried through scalar variables (f , e, s)
while data dependencies between j -loop iterations are carried through
arrays (HH).

in progressive alignment. There are two nested loops, with the
j -loop nested inside the i-loop. Every box in the figure depicts
one execution of the inner loop body corresponding to one pair
of i and j iteration counts. The execution of the inner loop body
has data dependencies with previous executions of the inner loop
body, as indicated by edges between the boxes.

To vectorize these loop nests, we need to apply loop skewing
in order to gather four independent executions of the inner loop
body.3 As a side effect, vectorization requires the construction
of loop pre- and post-ambles to enter a skewed loop regime.
This has an adverse effect on code size.

Ensuring correctness: The forward loop nest in the pairwise
alignment phase computes the position of the maximum of some
value. The original code records the ‘first’ loop iteration where
the maximum value occurs (if(b > a){a=b; imax=i;
jmax=j;}). Here, the ‘first’loop iteration is the one that occurs
first in the lexicographic ordering

(i, j) < (i ′, j ′) if (i < i ′) ∨ ((i = i ′) ∧ (j < j ′)).

Since vectorization changes the execution order of the
loop iterations, we need to take care that the same loop
iteration is recorded in order to obtain the same output of the
algorithm. In the vectorized code, we simultaneously remember
four positions where the maximum value occurs, each one
corresponding to one of the four vector lanes. When the
vectorized loop has finished, we need to select the maximum
value among the per-lane maxima and, if that maximum occurs
in multiple lanes, we need to select the appropriate loop
iteration counts corresponding to the lexicographic ordering in
the original code.

The remark above does not apply when it is known a priori
that only a single extremum exists. If multiple extrema exist,
then it may be allowed to compute a different extremum. This
saves instruction count in the inner loops as we do not have
to check for loop order when updating the per-lane extrema.
We discuss the performance potential of this optimization in
Section 6.5.

5.1.3. Loop unrolling
After applying loop skewing, the j -loop makes unaligned vector
accesses to intermediary arrays such as the HH[ · ] array. Each
iteration of the j -loop, the unaligned vector loaded from these
arrays moves by one scalar position (Fig. 4).

We assume that the vector covering elements 1–4 of the HH[·]
array is aligned. This is the optimal situation since the j -loop
starts at index 1. Consequently, the loaded vector is aligned
exactly once every fourth iteration of the loop and it is unaligned
in the other iterations. This behavior can be exploited to remove
the unaligned memory accesses.

3The vectorization factor is 4, since scalar variables are 32-bit integers and
the vector length is 128 bits.
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When unrolling the loop four times, the unrolled loop body
accesses 7 distinct scalar elements from the HH[ · ] array
(Fig. 4). These seven scalars are located in two consecutive
aligned vectors, and so it is possible to load them all at once into
vector registers using two aligned loads, and to store them back
using two aligned stores. All further references to the HH[ · ]
array are now redirected to the vector registers holding the
two words. This optimization removes all unaligned memory
accesses to the arrays that carry dependences between iterations
of the i-loop. We also apply this optimization to the character
arrays holding the sequences in the pairwise alignment phase.

Note that almost the full benefit of loop unrolling in this
particular situation stems from removing unaligned memory
accesses. The impact of improving instruction scheduling and
removing control flow instructions is marginal, as the skewed
loop body was already quite large.

5.2. Exploiting multiple SPUs

5.2.1. Thread-level parallelism in the pairwise alignment
stage

As the pairwise alignment phase independently aligns pairs
of sequences, there is abundant parallelism in the loops that
iterate over all pairs of sequences. Thus, each thread contains
the code necessary to align one pair of sequences. The number of
threads scales easily with the number of processors. We assume
a straightforward dynamic scheduler running on the PPU that
waits on mailbox messages from the SPU to signal that their
work package is finished and then sends the next work package
through the mailbox. All worker threads execute on SPUs. The
control thread executes on the PPU.

In order to reuse some of the fetched data structures (in
particular the sequence arrays), we identify work packages that
correspond to several pairwise alignments. Work packages are
constructed in relation to the structure of the matrix where the
alignment scores are stored. The rows of this matrix are divided
in slices of N consecutive elements such that N×sizeof(double)
is a multiple of 128 bytes, the typical DMA granularity of the
Cell processor. A work package can be defined as computing
the contents of one slice of the tmat[][] array.

FIGURE 4. Elements of the intermediary HH[ · ] array accessed by
successive iterations of the vectorized loop.

5.2.2. Task-level parallelism in the progressive alignment
stage

Progressive alignment is more difficult to parallelize. Although
the forward, backward and third loop nests are executed multiple
times, there is little parallelism between executions of this
set of loops. A parallelization scheme similar to the pairwise
alignment phase is thus not possible. Instead, we note that the
first two loop nests are control- and data-independent. The third
loop nest has data-dependencies with the first two loop nests,
but its execution time is several orders of magnitude smaller.
Thus a first parallelization is to execute the first two loop nests
in parallel, an optimization that is also performed in the multi-
threaded version of Clustal W.

A higher degree of parallelization is obtained by observing
that most of the execution time is spent in the prfscore()
function. As the control flow through the loops is entirely
independent of the data, we propose to off-load the computation
of the prfscore() function on a different SPU. The
optimization performed here is similar to loop distribution, as
the loop is split in a first loop that pre-computes all instances
of prfscore() (which are loop-constant) and a second loop
that consumes the pre-computed values. Furthermore, the pre-
computing loop is a DO-ALL loop, and so we can parallelize it
further. This bare optimization is, however, impractical due to
the large number of pre-computed values that must be stored.
Thus, we run the loops in parallel and buffer the pre-computed
values using a queue, forcing periodic synchronization between
the threads.

As the prfscore() function takes a significant amount
of time, we reserve four SPU threads to evaluate the
prfscore() function, each handling different values. Thus,
we instantiate three copies of the forward loop nest and three
copies of the backward loop nest (Fig. 5). Two copies compute
each a subset of the prfscore()s and send these values to
the third copy through a queue. The third copy of the loop
performs the remaining computations and reads the results
of the prfscore()s from the queue. As control flow is
highly predictable, it is easy to devise a static distribution
of work, such that each copy of the loop can proceed

FIGURE 5. Parallelization of pdiff() on six SPUs.
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with minimum communication.4 The only communication is
concerned with reading and writing the queue.

Separation of work: The computation of the prfscore()s
are off-loaded to other SPUs in a cyclic manner. It is possible to
compute scores where the second parameter is even (i.e. index
in the second profile is even) on one SPU and to compute scores
where the second parameter is odd on the other SPU. On the
other hand, the distribution of data can also be made at a coarser
granularity where the first N scores are computed on one SPU,
the next N scores on the second SPU and so on.

In previous work [8], we have chosen for the even/odd
distribution of work because of the memory footprint reduction
that resulted from loading only half of the second profile in
each SPU. Reductions in the memory footprint may result in
less streaming and hence better performance. When looking at
the problem again, we discovered that it was better to compute
larger chunks of subsequently consumed scores to the same SPU
because it allows important optimizations to the control flow in
the consuming thread, related to inter-task communication. As
the consuming thread is critical for performance, optimizations
to this thread are more effective.

Inter-task communication: Scores are collected in 256-entry
buffers. The two SPUs that produce the scores each have such a
buffer, while the consuming SPU has two buffers, one for each
producing SPU. When the consuming SPU tries to read a score
from an empty buffer, it sends a message to the appropriate
producing SPU to refill its buffer. The producing SPU performs
a direct SPU-to-SPU DMA transfer and sends a message back
when the transfer of the buffer is finished. The producing SPUs
block when their buffer is full, until the consuming SPU requests
its contents.

Note that it is not necessary to communicate the parameters
to the prfscore() between the SPUs. All SPUs consider the
scores in exactly the same order as the loop structure is identical
on all SPUs.

The communication protocol is quite straightforward to
implement. Our first implementation, however, allowed three
important performance improvements. First, we noted that most
scores are consumed in groups of 4 in the skewed regime loop
and are placed in a vector. The instruction count can be strongly
reduced by loading the vector directly from the buffer instead of
shuffling scalar load results into a vector. Hereto, consecutively
fetched prfscore()s must be read from the same buffer,
which precludes the use of the odd/even distribution of work.
Furthermore, to avoid unaligned vector loads from the buffer, we
insert code to flush the buffer before entering the main regime
loop. This flushing code must be appropriately duplicated on
the producing and consuming SPUs.

4Dynamic task scheduling is over-kill for this application as the amount
of parallelism is lower than the number of available SPUs. By evaluating the
prfscore() function on multiple SPUs, the consuming thread becomes the
bottleneck. No task scheduling approach can solve this.

Second, we noted that every access to the buffer must include
a check of the buffer full/empty condition. This requires control
flow which adds important overheads even though the branch
condition is strongly biased. We avoid this code by splitting the
regime loop into two loops, an inner loop that makes at most
256/4 iterations (the number of iterations needed to fill or empty
a buffer) and an outer loop that repeats the inner loop to make
the correct number of iterations. The buffer is flushed before
entering the inner loop, such that the inner loop stays within the
bounds of the buffer.

A third observation is that some time may be lost during
communication. In particular, the producing SPUs block on a
full buffer until the consuming SPU requests the contents of
the buffer. It is possible to minimize this delay by applying
double buffering, but we have not attempted this since our
measurements indicate that inter-thread communication delays
are small.

Optimizing the code by task: Each SPU executes distinct code
once the main loops are decomposed by task-level parallelism.
Furthermore, not all data structures are used by all tasks
anymore. Hence, there is a small performance benefit that
follows from specializing the SPU program into six different
versions. This reduces the code size and data footprint of the
programs; it reduces the amount of streaming and results in
a small performance improvement, as the non-streamed code
executes faster.

6. EVALUATION AND DISCUSSION

We separately evaluate the effect of each optimization on
Clustal W to understand the relative importance of each opti-
mization. Hereto, we created distinct versions of Clustal W, with
each one building upon the previous version and adding opti-
mizations to it. The baseline version of Clustal W (version 1.83)
is taken from the BioPerf benchmark suite [12]. The programs
are run with the B and C inputs from the same benchmark suite
as these are proposed to benchmark this version of Clustal W.
The B input has 66 sequences with average length of 1082 and
maximum length of 3270. The C input has 318 sequences with
average length of 1043 and maximum length of 5196.

We evaluate the performance of each of our versions of
Clustal W by running it on a QS21 Dual Cell BE-based blade,
with two Cell BE processors at 3.2 GHz with simultaneous
multi-threading enabled. The compiler is gcc 4.1.1 and the
operating system is linux (Fedora Core 7). The SDK is version
3.0. We added code to measure the overall wall clock time that
elapses during the execution of each phase of Clustal W. Each
version of Clustal W is run 10 times and the highest and lowest
execution times are dropped. We report the average execution
time over the eight remaining measurements. Speedups are
reported relative to the original (non-vectorized) Clustal W code
executing on the PPU.
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(a) (b)

FIGURE 6. Impact of optimizations on pairwise alignment: (a) B input and (b) C input.

We first discuss the effect of SPU-specific optimizations on
performance. Here, only a single SPU thread is used. Then, we
discuss how performance scales with multiple SPUs.

The same methodology was used in prior work [8]. Some
measurement results differ due to using different hardware,
a different compiler and also due to changes in the baseline
versions of our code. In particular, the code used for the
experiments reported in this paper have a data layout that is
strongly optimized for the SPUs, as discussed below.

6.1. Porting pairwise alignment

Our initial version of the pairwise alignment code for the SPU
requires code changes to load the appropriate data structures.
These DMA transfers are placed in the outer loops of the SPU
code and have little impact on performance. Also, the selected
code for the SPU contains a recursive function that is converted
to an iterative function. Overall, however, the initial SPU code
runs slower than the PPU code (Fig. 6).

Removing control flow speeds up the SPU code and already
makes it faster than the PPU code. Vectorization speeds up the
program by a factor of 2.72 (out of a maximum speedup of
4) for the B input.5 Further unrolling the loop with the goal
of removing unaligned memory accesses is very effective and
speeds up the SPU code by another factor of 1.98.

6.2. Porting progressive alignment

Porting the most time-consuming loops of the progressive
alignment phase shows much the same trends. The initial
version of the code, without optimizations, is again slower
than a single-threaded PPU code. The first optimization we
apply is to replace prfscore() by an unrolled and vectorized
loop, using spu_sel() primitives to select only the required

5We discuss results mostly for the B input, as the C input behaves similar
in most cases.

elements. This optimization makes the code as fast as the single-
threaded PPU version.

Removing control flow in the remaining loops has only a
small impact. Vectorization of the remaining loops does speed
up the code significantly, yielding an improvement of 3.13 times
on the B input. Overall the single-SPU version of progressive
alignment is 3.46 times faster than the PPU version. Speedup
due to vectorization yields, however, only a 2.07-fold speedup
on the C input. This turns out to be a serious impediment to
overall performance.

We have also attempted to improve performance of the pro-
gressive alignment phase by unrolling loops in order to avoid
unaligned memory accesses. This code, however, accesses mul-
tiple arrays (in fact, 7), many of which cannot be simultaneously
aligned. Removing unaligned memory accesses for a subset
of the arrays yields no measurable performance improvement.
This is probably due to the large size of the loop body and the
relative unimportance of these unaligned memory accesses.

The next bars show the performance of the 6-way multi-
threaded version of progressive alignment. It is 3.42 times faster
than the single-SPU version (Fig. 7).

6.3. Multi-threading the SPU code

Different phases of Clustal W show different scaling behavior
across multiple SPUs. The pairwise alignment phase scales
very well across multiple SPUs due to its coarse-grain and
abundant thread-level parallelism (Fig. 8). Using 16 SPUs,
pairwise alignment is 14.3 times faster than using a single SPU,
showing very good scaling behavior.

Progressive alignment, on the other hand, is less scalable.
As reported above, the 6-SPU version, exploiting task-level
parallelism, is just 3.42 times faster than the single-SPU version
for the B input. Speedup is again worse for the C input, with an
improvement of 1.50 times for the 6-SPU version.

We have sought to complement the task-level parallelism
in the main loops of progressive alignment with thread-level
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(a) (b)

FIGURE 7. Impact of optimizations on progressive alignment: (a) B input and (b) C input.

(a) (b)

FIGURE 8. Speedup over PPU-only execution per optimized phase and overall: (a) B input and (b) C input.

parallelism in other, less important, loops. The next main
consumer of time in this phase is the calcprf1() function,
which sets up intermediate data structures used in progressive
alignment. This function contains also some thread-level
parallelism at the loop level. Figure 8 shows the speedup
obtained for a fully optimized version of this code. However, the
speedup does not scale particularly well for multiple SPUs due
to limited loop iteration counts per invocation of the function.
With 16 SPUs, calcprf1() runs 2.34 times faster than on
the PPU.

Taking all optimizations and parallelizations into account, the
Clustal W program runs 24.4 times faster on 16 SPUs than on
a single PPU.

In previous work, we reported an overall speedup of 9.1 on
eight SPUs. In the current version of the code, the speedup for
eight SPUs is 21.18. This improvement is due to optimizations
to the progressive alignment phase, in particular to improved
data layout in the SPUs, to an improved division of work
between tasks and minimization of communication and buffer
management overheads and also due to parallelizing the
calcprf1() function.

6.4. Analysis

Table 1 shows pipeline utilization statistics for the optimized
code. These statistics were gathered using the dynamic profiling
facilities of the Cell BE simulator.

The optimized pairwise alignment code makes very good use
of the SPU pipeline. On average, two instructions are issued in
50.7% of the cycles and one instruction is issued in another
40.8% of the cycles. Pipeline stalls are rare and occur due to
dependencies on previous instructions.

Table 1 shows separate statistics for each of the SPU threads
for progressive alignment as they execute different codes.A first
point of interest is that all SPUs are frequently stalling on
channels. This happens (1) because the SPUs wait idle while
the PPU is performing other work, e.g. setting up profiles and
(2) because the SPUs are frequently communicating among
themselves.

SPUs 0–3 evaluate the prfscore() function and give
the best utilization. Mostly a single-instruction issue occurs
as the evaluation of prfscore() consists of almost entirely
integer operations. SPUs 4 and 5 execute the main body of

The Computer Journal, Vol. 53 No. 6, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


Accelerating Multiple Sequence Alignment with the Cell BE Processor 823

the forward and backward loop nests. These codes suffer from
many branch misses and dependencies, which are related to
inter-SPU communication when SPUs 4 and 5 are waiting for
the other SPUs.

6.5. Using domain-specific knowledge

Sometimes, further improvements are possible when using
domain-specific knowledge. For instance, the forward loop nest
in the pairwise alignment code computes the loop indices where
a variable becomes maximum. When applying loop skewing
and vectorization to this code, we had to take care that the
correct loop indices were computed. Hereto, additional code
was needed to ensure that the exact same maximum is returned
in case that there are multiple local maxima where the variable
reaches the same value. If we assume that any maximum may
be returned, then the code can be simplified and we measured
that the speedup for pairwise alignment becomes 99.0 on 16
SPUs instead of 91.9 when performing this computation.

6.6. Impact of transformations on the code

While extensive optimizations to the code yield significant
performance improvements, there is also a downside: extensive
optimizations strongly reduce the readability, maintainability
and portability of the code across multiple platforms.

Clearly, code optimized for the Cell BE processor cannot
be run on other processors. Furthermore, many optimizations

require the instantiation of multiple copies of the same code, e.g.
loop skewing, loop unrolling and splitting code across tasks, to
name just the most important optimizations used in this work.
Duplication of code makes it error-prone to make changes to the
code, in particular to the algorithm, as the same change must
be consistently implemented in all duplicates of the code. Also
the presence of SPU intrinsics, which are necessary to avoid
control flow and to express vectorization and DMA transfers,
make the code less readable.

Table 2 illustrates the code size of the compiled code after
making several optimizations. We show the code size of the
three loops in the pairwise alignment phase (forward, backward
and diff.). The baseline versions of the forward and backward
loops are quite small. The third loop is significantly larger as
it contains multiple functions, as well as code to cache parts
of a rarely used but huge array (i.e. displ[]). The table also
shows the code size of the forward and backward loops in the
progressive alignment phase. The total size of the programs is
also shown (not counting libraries).

Optimizing control flow generally decreases code size. The
code size of the backward loop and the progressive alignment
loops is increased because we peeled off one loop iteration. This
allowed us to remove several conditional statements in the main
loop body that check boundary conditions.

Although vectorization can reduce code size, the code
fragments occurring in Clustal W require loop skewing in
order to exploit vectorization. Four copies of the loop body
are required: a header loop, the regime loop, a trailer loop and

TABLE 1. Pipeline utilization, in percentage of execution time.

Progressive alignment
Pairwise alignment

Usage SPUx SPU0 SPU1 SPU2 SPU3 SPU4 SPU5

Single cycle 40.8 30.5 30.4 35.3 34.6 12.6 11.0
Dual cycle 50.7 6.7 6.2 7.8 7.6 8.1 4.3
Nop cycle 0.3 0.3 0.1 0.4 0.4 0.5 0.3
Branch miss 0.5 5.3 5.7 1.9 1.9 21.0 24.8
Dependency 6.8 4.8 6.0 4.9 5.1 9.6 10.3
Channel stall 0.9 52.4 51.7 49.8 50.4 48.1 49.3

TABLE 2. Code size after optimizations, listed in bytes.

Pairwise alignment Progressive alignment

Optimization Forward Backward Diff. Total Forward Backward Total

baseline 564 544 4560 10224 2404 3188 10352
prfscore(1) N/A N/A N/A N/A 2432 3228 10416
control 524 672 4352 10088 3024 3196 10976
SIMD 2144 672 4352 12512 8188 9212 22160
SIMD + unrolling 2924 672 4352 13296 N/A N/A N/A
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a loop to handle the occurrence of loop iteration counts that
are not a multiple of 4. Consequently, code size increases about
four times.

When unrolling the forward loop nest in order to remove
unaligned memory accesses, code size is again increased. This
optimization is applied only to the regime loop. As a result,
total code size is not increased by a factor of 4, but (only) by
about half.

6.7. Comparison with other platforms

We compare the performance of our code optimized specifically
to the Cell BE processor to generically parallelized code. Our
main comparison is the Clustal W–SMP code, included in the
BioPerf suite [12]. The Clustal W–SMP program exploits the
same loop-level parallelism in the pairwise alignment phase
as we do. Furthermore, the parallelism between the backward
loop and the forward loop in the progressive alignment phase
is exploited, but this is limited to using two threads. The SMP
version does not make use of SIMD operations.

We execute the Clustal W–SMP program on a 2.13 GHz Intel
Core2 Duo featuring two cores and executing three threads in
total. The best performance obtained on this platform is shown
in Fig. 9 for the B input. The Core2 Duo processor obtains a
speedup of 1.64 over single-threaded execution. A near-perfect
speedup is obtained in the pairwise alignment stage, but the
progressive alignment stage sees only a speedup of 1.5 times
due to the irregularity of the parallelism.

The Core2 Duo executes the single-threaded code much
faster than the Cell BE processor. On the other hand, the high
execution bandwidth of the SPUs allow the Cell BE blade to
execute the parallelized code 3.8 times faster than the 3-threaded
SMP version. Note that the latter code has no SIMD applied,
and hence this speed benefit can be reduced.

The Cell BE’s speed advantage is mostly due to the
pairwise alignment phase, as the single-SPU implementation
of pairwise alignment is already faster than the Core2
Duo. As pairwise alignment is trivially parallel, the 16-SPU
implementation is much faster than the 2-core Core2 Duo. On
the other hand, progressive alignment has less parallelism that

FIGURE 9. Execution speed of ClustalW code on multiple platforms.

occurs only in short bursts. The single-SPU implementation
of progressive alignment is a little slower than it is on the
Core2 Duo (29 s vs. 26 s), but 6-way parallelization improves
performance over the SMP version. In conclusion, the Cell BE
processor obtains a huge benefit when thread-level parallelism
is high, but it loses much terrain to SMP processors with ‘fat’
and fast cores when thread-level parallelism is low.

7. RELATED WORK

The Cell BE Architecture promises high performance at low
power consumption. Consequently, several researchers have
investigated the utility of the Cell BE for particular application
domains.

Williams et al. [13] measure performance and power
consumption of the Cell BE when executing scientific
computing kernels. They compare these numbers to other
architectures and find potential speedups in the 10–20 range.
However, the low double-precision floating-point performance
of the Cell is a major downside for scientific applications.
The upcoming generation of Cell BE are expected to have
enhanced double precision removing this drawback [14]. A
high-performance FFT is described in [15].

Heman et al. [16] port a relational database to the Cell BE.
Only some database operations (such as projection, selection
etc.) are executed on the SPUs. The authors point out the
importance of avoiding branches and of properly preparing the
layout of data structures to enable vectorization.

Bader et al. [17] develop a list ranking algorithm for the Cell
BE. List ranking is a combinatorial application with highly
irregular memory accesses. As memory accesses are hard to
predict in this application, it is proposed to use software-
managed threads on the SPUs. At any one time, only one thread
is running. When it initiates a DMA request, the thread blocks
and control switches to another thread. This results in a kind of
software fine-grain multi-threading and yields speedups up to
8.4 times for this application.

Blagojevic et al. [18] port a randomized axelerated maximum
likelihood kernel for phylogenetic tree construction to the Cell
BE. They use multiple levels of parallelism and implement a
scheduler that selects at runtime between loop-level parallelism
and task-level parallelism.

Also, the Cell BE has been tested using bio-informatics
applications. Sachdeva et al. [19] port the FASTA and Clustal W
applications to the Cell BE. For Clustal W, they have only
adapted the forward loop in the pairwise alignment phase for
the SPU. Their implementation of the pairwise alignment phase
takes 3.76 s on eight SPUs, whereas our implementation takes
1.44 s. Based on the description in the paper by Sachdeva et al.,
we determined that our implementation is faster due to the
removal of unaligned memory accesses, due to the vectorization
of address computations when accessing the substitution matrix
and also due to optimizing control flow in the backward
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pass. Furthermore, Sachdeva et al. apply static load balancing
while our experiments (not discussed) reveal that dynamic
load balancing works better for pairwise alignment since the
comparison of two sequences has variable execution time.

Multiple sequence alignment has also been optimized for
other accelerator architectures. In recent work, Liu et al.
optimized Clustal W for CPUs using the CUDA language [10].
They parallelized all three stages, including the construction
of the guide tree, and they traded off inter-task parallelism
against intra-task parallelism in the pairwise alignment. In
the progressive alignment phase, parallelism between multiple
independent alignments is sought. The existence of this
parallelism depends on the structure of the guide tree. The
parallelism proposed in this work, splitting the main loops of
progressive alignment in heterogeneous loops, could potentially
also speed up GPU implementations. One should take into
account, however, that GPUs prefer executing the same code
for all threads in a thread block, which complicates the
implementation of this idea on GPUs.

It is well known that, aside from tuning algorithm
implementations, important speed improvements can be
obtained by making algorithmic changes. Liu et al. [20]
propose improvements to the Smith–Waterman algorithm that
avoid making the traceback. Farrar [21] proposes a different
data layout of the profiles that improves the performance of
vectorization. This change in data layout, however, percolates
through the whole alignment program and may require changes
to other data structures too [21]. Sarje and Aluru [22] develop
alignment algorithms that are tuned for particular situations,
e.g. finding similarities in mRNA sequences. It was the express
intent of this work not to make algorithmic changes and to
adhere strictly to the original program output when optimizing
the implementation.

8. CONCLUSION AND FUTURE WORK

We have investigated the potential of the Cell BE processor
by means of a case study of implementing a bio-informatics
program on the Cell BE. We have described our methodology
for porting code and have pointed out the importance of
representing data structures.

Many optimizations are required in order to saturate
the execution bandwidth of the Cell BE processor. In
particular, loop optimizations such as loop unrolling and loop
skewing, vectorization and extracting thread-level parallelism
are necessary. These optimizations yield an overall speedup
of 91.9 compared to PPU-only execution for the highly
parallel pairwise alignment phase. The less parallel progressive
alignment phase can be sped up by a factor of 13.6.

While these optimizations yield significant speedups, they
also have a downside as they strongly impact the readability and
maintainability of the source code. In the absence of automated
techniques for extracting all of this parallelism, it seems that

code readability and maintainability must be sacrificed for using
the computing power of the Cell BE processor.

Compared to the Intel Core2 duo, a multi-core processor
with a small number of fat cores, our implementation is just
3.8 times faster. Thus, a larger fraction of the application
must be parallelized to a larger extent in order to warrant
the programming effort necessary for the Cell BE. Future
work in optimizing Clustal W may consider exploiting
parallelism between recursive calls in the pdiff() function
of the progressive alignment stage [8] and in parallelizing
phylogenetic tree construction [9]. Applying SIMD to the SMP
version should give a better characterization of performance.
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