Results 1  10
of
885
Fast Algorithms for Mining Association Rules
, 1994
"... We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known a ..."
Abstract

Cited by 3612 (15 self)
 Add to MetaCart
We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known
Mining Generalized Association Rules
, 1995
"... We introduce the problem of mining generalized association rules. Given a large database of transactions, where each transaction consists of a set of items, and a taxonomy (isa hierarchy) on the items, we find associations between items at any level of the taxonomy. For example, given a taxonomy th ..."
Abstract

Cited by 591 (7 self)
 Add to MetaCart
solution to the problem is to add all ancestors of each item in a transaction to the transaction, and then run any of the algorithms for mining association rules on these "extended transactions ". However, this "Basic" algorithm is not very fast; we present two algorithms, Cumulate
Mining Quantitative Association Rules in Large Relational Tables
, 1996
"... We introduce the problem of mining association rules in large relational tables containing both quantitative and categorical attributes. An example of such an association might be "10% of married people between age 50 and 60 have at least 2 cars". We deal with quantitative attributes by fi ..."
Abstract

Cited by 444 (3 self)
 Add to MetaCart
"greaterthanexpectedvalue" interest measure to identify the interesting rules in the output. We give an algorithm for mining such quantitative association rules. Finally, we describe the results of using this approach on a reallife dataset. 1 Introduction Data mining, also known
Sampling Large Databases for Association Rules
, 1996
"... Discovery of association rules is an important database mining problem. Current algorithms for nding association rules require several passes over the analyzed database, and obviously the role of I/O overhead is very signi cant for very large databases. We present new algorithms that reduce the data ..."
Abstract

Cited by 470 (3 self)
 Add to MetaCart
Discovery of association rules is an important database mining problem. Current algorithms for nding association rules require several passes over the analyzed database, and obviously the role of I/O overhead is very signi cant for very large databases. We present new algorithms that reduce
Dynamic Itemset Counting and Implication Rules for Market Basket Data
, 1997
"... We consider the problem of analyzing marketbasket data and present several important contributions. First, we present a new algorithm for finding large itemsets which uses fewer passes over the data than classic algorithms, and yet uses fewer candidate itemsets than methods based on sampling. We in ..."
Abstract

Cited by 615 (6 self)
 Add to MetaCart
investigate the idea of item reordering, which can improve the lowlevel efficiency of the algorithm. Second, we present a new way of generating "implication rules," which are normalized based on both the antecedent and the consequent and are truly implications (not simply a measure of co
New Algorithms for Fast Discovery of Association Rules
 In 3rd Intl. Conf. on Knowledge Discovery and Data Mining
, 1997
"... Association rule discovery has emerged as an important problem in knowledge discovery and data mining. The association mining task consists of identifying the frequent itemsets, and then forming conditional implication rules among them. In this paper we present efficient algorithms for the discovery ..."
Abstract

Cited by 397 (26 self)
 Add to MetaCart
Association rule discovery has emerged as an important problem in knowledge discovery and data mining. The association mining task consists of identifying the frequent itemsets, and then forming conditional implication rules among them. In this paper we present efficient algorithms
Discovering Frequent Closed Itemsets for Association Rules
, 1999
"... In this paper, we address the problem of finding frequent itemsets in a database. Using the closed itemset lattice framework, we show that this problem can be reduced to the problem of finding frequent closed itemsets. Based on this statement, we can construct efficient data mining algorithms by lim ..."
Abstract

Cited by 410 (14 self)
 Add to MetaCart
by limiting the search space to the closed itemset lattice rather than the subset lattice. Moreover, we show that the set of all frequent closed itemsets suffices to determine a reduced set of association rules, thus addressing another important data mining problem: limiting the number of rules produced
Scalable Algorithms for Association Mining
 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
, 2000
"... Association rule discovery has emerged as an important problem in knowledge discovery and data mining. The association mining task consists of identifying the frequent itemsets, and then forming conditional implication rules among them. In this paper we present efficient algorithms for the discovery ..."
Abstract

Cited by 259 (23 self)
 Add to MetaCart
Association rule discovery has emerged as an important problem in knowledge discovery and data mining. The association mining task consists of identifying the frequent itemsets, and then forming conditional implication rules among them. In this paper we present efficient algorithms
Limiting Privacy Breaches in Privacy Preserving Data Mining
 In PODS
, 2003
"... There has been increasing interest in the problem of building accurate data mining models over aggregate data, while protecting privacy at the level of individual records. One approach for this problem is to randomize the values in individual records, and only disclose the randomized values. The mod ..."
Abstract

Cited by 301 (11 self)
 Add to MetaCart
on privacy breaches without any knowledge of the distribution of the original data. We instantiate this methodology for the problem of mining association rules, and modify the algorithm from [9] to limit privacy breaches without knowledge of the data distribution. Next, we address the problem that the amount
Efficient Algorithms for Discovering Association Rules
, 1994
"... Association rules are statements of the form "for 90 % of the rows of the relation, if the row has value 1 in the columns in set W , then it has 1 also in column B". Agrawal, Imielinski, and Swami introduced the problem of mining association rules from large collections of data, and gave a ..."
Abstract

Cited by 237 (11 self)
 Add to MetaCart
course enrollment database indicate that the method outperforms the previous one by a factor of 5. We also show that sampling is in general a very efficient way of finding such rules. Keywords: association rules, covering sets, algorithms, sampling. 1 Introduction Data mining (database mining, knowledge
Results 1  10
of
885