• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Generalized Feature Extraction for Structural Pattern Recognition in Time-Series Data (2001)

Cached

  • Download as a PDF

Download Links

  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]
  • [reports-archive.adm.cs.cmu.edu]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Robert T. Olszewski , Christos Faloutsos , David Banks Dot
Venue:In Time-Series Data, PhD dissertation, Carnagie Mellon University
Citations:32 - 0 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@TECHREPORT{Olszewski01generalizedfeature,
    author = {Robert T. Olszewski and Christos Faloutsos and David Banks Dot},
    title = {Generalized Feature Extraction for Structural Pattern Recognition in Time-Series Data},
    institution = {In Time-Series Data, PhD dissertation, Carnagie Mellon University},
    year = {2001}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Pattern recognition encompasses two fundamental tasks: description and classification. Given an object to analyze, a pattern recognition system first generates a description of it (i.e., the pattern) and then classifies the object based on that description (i.e., the recognition). Two general approaches for implementing pattern recognition systems, statistical and structural, employ different techniques for description and classification. Statistical approaches to pattern recognition use decision-theoretic concepts to discriminate among objects belonging to different groups based upon their quantitative features. Structural approaches to pattern recognition use syntactic grammars to discriminate among objects belonging to different groups based upon the arrangement of their morphological (i.e., shape-based or structural) features. Hybrid approaches to pattern recognition combine aspects of both statistical and structural pattern recognition. Structural pattern recognition systems are difficult to apply to new domains because implementation of both the description and classification tasks requires domain knowledge. Knowledge acquisition

Keyphrases

structural pattern recognition    time-series data    feature extraction    pattern recognition system    different group    decision-theoretic concept    quantitative feature    pattern recognition    fundamental task    hybrid approach    classification task    recognition combine aspect    general approach    new domain    syntactic grammar    employ different technique    statistical approach    structural approach    knowledge acquisition    structural pattern recognition system   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University