• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Learning Rich Features from RGB-D Images for Object Detection and Segmentation: Supplementary Material

Cached

  • Download as a PDF

Download Links

  • [www.cs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www.eecs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www.eecs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www.eecs.berkeley.edu]
  • [arxiv.org]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Saurabh Gupta , Ross Girshick , Pablo Arbeláez , Jitendra Malik
Citations:31 - 2 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Gupta_learningrich,
    author = {Saurabh Gupta and Ross Girshick and Pablo Arbeláez and Jitendra Malik},
    title = {Learning Rich Features from RGB-D Images for Object Detection and Segmentation: Supplementary Material},
    year = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

In this subsection, we present the Precision Recall curves on the NYUD2 test set, comparing the output from our object detectors with that from RGB DPMs [1],

Keyphrases

rich feature    supplementary material    object detection    rgb-d image    nyud2 test set    precision recall    rgb dpms    object detector   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University