• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

HAC estimation in a spatial framework (2007)

Cached

  • Download as a PDF

Download Links

  • [econweb.umd.edu]
  • [econweb.umd.edu]
  • [econ-server.umd.edu]
  • [econ-server.umd.edu]
  • [econweb.umd.edu]
  • [econ-server.umd.edu]
  • [econweb.umd.edu]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Harry H. Kelejian , Ingmar R. Prucha
Venue:J. Econom
Citations:62 - 7 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@ARTICLE{Kelejian07hacestimation,
    author = {Harry H. Kelejian and Ingmar R. Prucha},
    title = {HAC estimation in a spatial framework},
    journal = {J. Econom},
    year = {2007},
    pages = {131--154}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We suggest a nonparametric heteroscedasticity and autocorrelation consistent (HAC) estimator of the variance-covariance (VC) matrix for a vector of sample moments within a spatial context. We demonstrate consistency under a set of assumptions that should be satisfied by a wide class of spatial models. We allow for more than one measure of distance, each of which may be measured with error. Monte Carlo results suggest that our estimator is reasonable in finite samples. We then consider a spatial model containing various complexities and demonstrate that our HAC estimator can be applied in the context of that model.

Keyphrases

hac estimation    spatial framework    spatial model    finite sample    sample moment    wide class    nonparametric heteroscedasticity    various complexity    spatial context    monte carlo result    autocorrelation consistent    hac estimator   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University