• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Online passive-aggressive algorithms (2006)

Cached

  • Download as a PDF

Download Links

  • [webee.technion.ac.il]
  • [engr.case.edu]
  • [books.nips.cc]
  • [www.jmlr.org]
  • [www.cs.huji.ac.il]
  • [ttic.uchicago.edu]
  • [static.googleusercontent.com]
  • [eprints.pascal-network.org]
  • [eprints.pascal-network.org]
  • [www.lirmm.fr]
  • [jmlr.org]
  • [www.lirmm.fr]
  • [www.lirmm.fr]
  • [www.lirmm.fr]
  • [research.microsoft.com]
  • [static.googleusercontent.com]
  • [www.lirmm.fr]
  • [www.lirmm.fr]
  • [www.lirmm.fr]
  • [www.lirmm.fr]
  • [www.cs.huji.ac.il]
  • [leibniz.cs.huji.ac.il]
  • [eprints.pascal-network.org]
  • [books.nips.cc]
  • [www.cs.huji.ac.il]
  • [ttic.uchicago.edu]
  • [books.nips.cc]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Koby Crammer , Ofer Dekel , Shai Shalev-Shwartz , Yoram Singer
Venue:JMLR
Citations:435 - 24 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@ARTICLE{Crammer06onlinepassive-aggressive,
    author = {Koby Crammer and Ofer Dekel and Shai Shalev-Shwartz and Yoram Singer},
    title = {Online passive-aggressive algorithms},
    journal = {JMLR},
    year = {2006}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We present a unified view for online classification, regression, and uniclass problems. This view leads to a single algorithmic framework for the three problems. We prove worst case loss bounds for various algorithms for both the realizable case and the non-realizable case. The end result is new algorithms and accompanying loss bounds for hinge-loss regression and uniclass. We also get refined loss bounds for previously studied classification algorithms.

Keyphrases

online passive-aggressive algorithm    loss bound    unified view    hinge-loss regression    worst case loss bound    realizable case    various algorithm    non-realizable case    new algorithm    end result    uniclass problem    online classification    single algorithmic framework    classification algorithm   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University