@MISC{Hendeby_inlinear, author = {Gustaf Hendeby and Gustaf Hendeby}, title = {in Linear Non-Gaussian Systems}, year = {} }

Share

OpenURL

Abstract

Many methods used for estimation and detection consider only the mean and variance of the involved noise instead of the full noise descriptions. One reason for this is that the mathematics is often considerably simplified this way. However, the implications of the simplifications are seldom studied, and this thesis shows that if no approximations are made performance is gained. Furthermore, the gain is quantified in terms of the useful information in the noise distributions involved. The useful information is given by the intrinsic accuracy, and a method to compute the intrinsic accuracy for a given distribution, using Monte Carlo methods, is outlined. A lower bound for the covariance of the estimation error for any unbiased estimator is given by the Cramér-Rao lower bound (CRLB). At the same time, the Kalman filter is the best linear unbiased estimator (BLUE) for linear systems. It is in this thesis shown that the CRLB and the BLUE performance are given by the same expression, which is parameterized in the intrinsic accuracy of the noise. How the performance depends on the noise is then used to indicate when nonlinear filters, e.g., a particle filter, should be used instead of a Kalman filter. The CRLB results are shown, in simulations, to be a