• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Tandem Acoustic Modeling In Large-Vocabulary Recognition (2001)

Cached

  • Download as a PDF

Download Links

  • [www.icsi.berkeley.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.ee.columbia.edu]
  • [labrosa.ee.columbia.edu]
  • [www-2.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www1.icsi.berkeley.edu]
  • [mlsp.cs.cmu.edu]
  • [labrosa.ee.columbia.edu]
  • [www1.icsi.berkeley.edu]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Daniel Ellis , Rita Singh , Sunil Sivadas
Venue:in Proc. ICASSP-2001
Citations:44 - 2 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Ellis01tandemacoustic,
    author = {Daniel Ellis and Rita Singh and Sunil Sivadas},
    title = {Tandem Acoustic Modeling In Large-Vocabulary Recognition},
    booktitle = {in Proc. ICASSP-2001},
    year = {2001},
    pages = {517--520}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

In the tandem approach to modeling the acoustic signal, a neural-net preprocessor is first discriminatively trained to estimate posterior probabilities across a phone set. These are then used as feature inputs for a conventional hidden Markov model (HMM) based speech recognizer, which relearns the associations to subword units. In this paper, we apply the tandem approach to the data provided for the first Speech in Noisy Environments (SPINE1) evaluation conducted by the Naval Research Laboratory (NRL) in August 2000. In our previous experience with the ETSI Aurora noisy digits (a small-vocabulary, high-noise task) the tandem approach achieved error-rate reductions of over 50% relative to the HMM baseline. For SPINE1, a larger task involving more spontaneous speech, we find that, when context-independent models are used, the tandem features continue to result in large reductions in word-error rates relative to those achieved by systems using standard MFC or PLP features. However, these ...

Keyphrases

tandem approach    tandem acoustic modeling    large-vocabulary recognition    acoustic signal    naval research laboratory    noisy environment    large reduction    hmm baseline    speech recognizer    tandem feature    feature input    high-noise task    posterior probability    standard mfc    phone set    spontaneous speech    context-independent model    first speech    conventional hidden markov model    previous experience    word-error rate    neural-net preprocessor    plp feature    error-rate reduction    etsi aurora noisy digit   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University