• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Lambertian Reflectance and Linear Subspaces (2000)

Cached

  • Download as a PDF

Download Links

  • [www.neci.nj.nec.com]
  • [www.cs.umd.edu]
  • [meip6sb.alab.t.u-tokyo.ac.jp]
  • [www.cs.umd.edu]
  • [www.wisdom.weizmann.ac.il]
  • [www.wisdom.weizmann.ac.il]
  • [www.cs.umd.edu]
  • [www.cvl.iis.u-tokyo.ac.jp]
  • [www.cs.drexel.edu]
  • [www.wisdom.weizmann.ac.il]
  • [www.cs.umd.edu]
  • [www.wisdom.weizmann.ac.il]
  • [www.cs.umd.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Ronen Basri , David Jacobs
Citations:526 - 20 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@ARTICLE{Basri00lambertianreflectance,
    author = {Ronen Basri and David Jacobs},
    title = {Lambertian Reflectance and Linear Subspaces},
    journal = {},
    year = {2000},
    volume = {25},
    pages = {383--390}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We prove that the set of all reflectance functions (the mapping from surface normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a wide variety of lighting conditions can be approximated accurately by a low-dimensional linear subspace, explaining prior empirical results. We also provide a simple analytic characterization of this linear space. We obtain these results by representing lighting using spherical harmonics and describing the effects of Lambertian materials as the analog of a convolution. These results allow us to construct algorithms for object recognition based on linear methods as well as algorithms that use convex optimization to enforce non-negative lighting functions. Finally, we show a simple way to enforce non-negative lighting when the images of an object lie near a 4D linear space. Research conducted w...

Keyphrases

linear subspace    lambertian reflectance    linear space    object recognition    convex lambertian object    surface normal    wide variety    object lie    use convex optimization    spherical harmonic    simple analytic characterization    non-negative lighting    linear method    non-negative lighting function    lambertian material    lambertian object    low-dimensional linear subspace    simple way    reflectance function    prior empirical result   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University