• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

On the monotone upper bound problem (2003)

Cached

  • Download as a PDF

Download Links

  • [page.math.tu-berlin.de]
  • [www.math.tu-berlin.de]
  • [page.mi.fu-berlin.de]
  • [arxiv.org]
  • [arxiv.org]
  • [ftp.math.tu-berlin.de]
  • [www.emis.de]
  • [www.expmath.org]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Julian Pfeifle , Günter M. Ziegler
Citations:4 - 1 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Pfeifle03onthe,
    author = {Julian Pfeifle and Günter M. Ziegler},
    title = {On the monotone upper bound problem},
    year = {2003}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

The Monotone Upper Bound Problem asks for the maximal number M(d, n) ofvertices on a strictly-increasing edge-path on a simple d-polytope with n facets. More specifically, it asks whether the upper bound M(d, n) ≤ Mubt(d, n) provided by McMullen’s (1970) Upper Bound Theorem is tight, where Mubt(d, n) is the number of vertices of a dual-to-cyclic d-polytope with n facets. It was recently shown that the upper bound M(d, n) ≤ Mubt(d, n) holdswith equality for small dimensions (d ≤ 4: Pfeifle, 2003) and for small corank (n ≤ d +2: Gärtner et al., 2001). Here we prove that it is not tight in general: In dimension d =6apolytopewithn =9facetscanhaveMubt(6, 9) = 30 vertices, but not more than 27 ≤ M(6, 9) ≤ 29 vertices can lie on a strictly-increasing edge-path. The proof involves classification results about neighborly polytopes, Kalai’s (1988) concept of abstract objective functions, the Holt-Klee conditions (1998), explicit enumeration, Welzl’s (2001) extended Gale diagrams, randomized generation of instances, as well as non-realizability proofs via a version of the Farkas lemma.

Keyphrases

monotone upper bound problem    strictly-increasing edge-path    upper bound    holdswith equality    neighborly polytopes    non-realizability proof    small corank    dual-to-cyclic d-polytope    simple d-polytope    gale diagram    holt-klee condition    abstract objective function    rtner et al    maximal number    classification result    upper bound theorem    farkas lemma    explicit enumeration    small dimension   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University