• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

LabelMe: A Database and Web-Based Tool for Image Annotation (2008)

Cached

  • Download as a PDF

Download Links

  • [staff.science.uva.nl]
  • [staff.science.uva.nl]
  • [lear.inrialpes.fr]
  • [www.ai.mit.edu]
  • [people.csail.mit.edu]
  • [people.csail.mit.edu]
  • [people.csail.mit.edu]
  • [people.csail.mit.edu]
  • [publications.csail.mit.edu]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by B. C. Russell , A. Torralba , K. P. Murphy , W. T. Freeman
Citations:677 - 46 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Russell08labelme:a,
    author = {B. C. Russell and A. Torralba and K. P. Murphy and W. T. Freeman},
    title = { LabelMe: A Database and Web-Based Tool for Image Annotation},
    year = {2008}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sharing of such annotations. Using this annotation tool, we have collected a large dataset that spans many object categories, often containing multiple instances over a wide variety of images. We quantify the contents of the dataset and compare against existing state of the art datasets used for object recognition and detection. Also, we show how to extend the dataset to automatically enhance object labels with WordNet, discover object parts, recover a depth ordering of objects in a scene, and increase the number of labels using minimal user supervision and images from the web.

Keyphrases

web-based tool    image annotation    discover object part    object recognition    large collection    wide variety    recognition research    multiple instance    quantitative evaluation    depth ordering    art datasets    ground truth label    minimal user supervision    object label    object detection    many object category    instant sharing    large dataset    supervised learning    annotation tool    easy image annotation   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University