• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Minimax Estimation via Wavelet Shrinkage (1992)

Cached

  • Download as a PDF

Download Links

  • [www-stat.stanford.edu]
  • [www-stat.stanford.edu]
  • [www-stat.stanford.edu]
  • [www-stat.stanford.edu]
  • [spib.rice.edu]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by David L. Donoho , Iain M. Johnstone
Citations:320 - 29 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@TECHREPORT{Donoho92minimaxestimation,
    author = {David L. Donoho and Iain M. Johnstone},
    title = {Minimax Estimation via Wavelet Shrinkage},
    institution = {},
    year = {1992}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We attempt to recover an unknown function from noisy, sampled data. Using orthonormal bases of compactly supported wavelets we develop a nonlinear method which works in the wavelet domain by simple nonlinear shrinkage of the empirical wavelet coe cients. The shrinkage can be tuned to be nearly minimax over any member of a wide range of Triebel- and Besov-type smoothness constraints, and asymptotically minimax over Besov bodies with p q. Linear estimates cannot achieve even the minimax rates over Triebel and Besov classes with p <2, so our method can signi cantly outperform every linear method (kernel, smoothing spline, sieve,:::) in a minimax sense. Variants of our method based on simple threshold nonlinearities are nearly minimax. Our method possesses the interpretation of spatial adaptivity: it reconstructs using a kernel which mayvary in shape and bandwidth from point to point, depending on the data. Least favorable distributions for certain of the Triebel and Besov scales generate objects with sparse wavelet transforms. Many real objects have similarly sparse transforms, which suggests that these minimax results are relevant for practical problems. Sequels to this paper discuss practical implementation, spatial adaptation properties and applications to inverse problems.

Keyphrases

wavelet shrinkage    minimax estimation    least favorable distribution    wavelet domain    empirical wavelet coe cients    wide range    practical implementation    minimax sense    besov body    simple nonlinear shrinkage    besov scale    nonlinear method    spatial adaptation property    spatial adaptivity    many real object    besov-type smoothness constraint    practical problem    minimax rate    minimax result    besov class    linear method    simple threshold nonlinearities    unknown function    linear estimate    sparse wavelet transforms    sparse transforms    orthonormal base   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University