• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Distributed regression: an efficient framework for modeling sensor network data (2004)

Cached

  • Download as a PDF

Download Links

  • [db.csail.mit.edu]
  • [db.lcs.mit.edu]
  • [graphics.stanford.edu]
  • [www.intel-research.net]
  • [intel-research.net]
  • [www.cs.cmu.edu]
  • [www.select.cs.cmu.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www-2.cs.cmu.edu]
  • [www.ece.rice.edu]
  • [www.cs.cmu.edu]
  • [select.cs.cmu.edu]
  • [www.ece.rice.edu]
  • [robotics.stanford.edu]
  • [ai.stanford.edu]
  • [ai.stanford.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Carlos Guestrin , Peter Bodik , Romain Thibaux , Mark Paskin , Samuel Madden
Venue:In IPSN
Citations:178 - 8 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Guestrin04distributedregression:,
    author = {Carlos Guestrin and Peter Bodik and Romain Thibaux and Mark Paskin and Samuel Madden},
    title = {Distributed regression: an efficient framework for modeling sensor network data},
    booktitle = {In IPSN},
    year = {2004}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We present distributed regression, an efficient and general framework for in-network modeling of sensor data. In this framework, the nodes of the sensor network collaborate to optimally fit a global function to each of their local measurements. The algorithm is based upon kernel linear regression, where the model takes the form of a weighted sum of local basis functions; this provides an expressive yet tractable class of models for sensor network data. Rather than transmitting data to one another or outside the network, nodes communicate constraints on the model parameters, drastically reducing the communication required. After the algorithm is run, each node can answer queries for its local region, or the nodes can efficiently transmit the parameters of the model to a user outside the network. We present an evaluation of the algorithm based upon data from a 48-node sensor network deployment at the Intel Research- Berkeley Lab, demonstrating that our distributed algorithm converges to the optimal solution at a fast rate and is very robust to packet losses.

Keyphrases

sensor network data    efficient framework    distributed algorithm converges    general framework    distributed regression    local basis function    optimal solution    sensor data    global function    kernel linear regression    local measurement    in-network modeling    intel research berkeley lab    fast rate    tractable class    weighted sum    48-node sensor network deployment    sensor network collaborate    local region    model parameter   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University