• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

A database and evaluation methodology for optical flow (2007)

Cached

  • Download as a PDF

Download Links

  • [www.cs.brown.edu]
  • [www.cs.brown.edu]
  • [cs.brown.edu]
  • [research.microsoft.com]
  • [www.visinf.tu-darmstadt.de]
  • [www.cs.brown.edu]
  • [www.cs.brown.edu]
  • [cs.brown.edu]
  • [files.is.tue.mpg.de]
  • [scribblethink.org]
  • [vision.middlebury.edu]
  • [vision.middlebury.edu]
  • [www.gris.informatik.tu-darmstadt.de]
  • [www.gris.tu-darmstadt.de]
  • [www.cs.brown.edu]
  • [www.idiom.com]
  • [research.microsoft.com]
  • [cs.brown.edu]
  • [cs.brown.edu]
  • [scribblethink.org]
  • [cs.brown.edu]
  • [www.cs.brown.edu]
  • [www.gris.informatik.tu-darmstadt.de]
  • [www.gris.tu-darmstadt.de]
  • [www.gris.informatik.tu-darmstadt.de]
  • [www.visinf.tu-darmstadt.de]
  • [vision.middlebury.edu]
  • [vision3d.iro.umontreal.ca]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Simon Baker , Daniel Scharstein , J. P. Lewis , Stefan Roth , Michael J. Black , Richard Szeliski
Venue:In Proceedings of the IEEE International Conference on Computer Vision
Citations:407 - 22 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Baker07adatabase,
    author = {Simon Baker and Daniel Scharstein and J. P. Lewis and Stefan Roth and Michael J. Black and Richard Szeliski},
    title = {A database and evaluation methodology for optical flow},
    booktitle = {In Proceedings of the IEEE International Conference on Computer Vision},
    year = {2007}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the ground-truth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic sequences, (3) high frame-rate video used to study interpolation error, and (4) modified stereo sequences of static scenes. In addition to the average angular error used by Barron et al., we compute the absolute flow endpoint error, measures for frame interpolation error, improved statistics, and results at motion discontinuities and in textureless regions. In October 2007, we published the performance of several well-known methods on a preliminary version of our data to establish the current state of the art. We also made the data freely available on the web at

Keyphrases

optical flow algorithm    optical flow    evaluation methodology    motion discontinuity    nonrigid motion    evaluation method    next generation    real sensor noise    quantitative evaluation    textureless region    average angular error    several well-known method    significant advance    stereo sequence    preliminary version    different aspect    high frame-rate video    complex natural scene    frame interpolation error    interpolation error    ground-truth flow    realistic synthetic sequence    current state    hidden fluorescent texture    absolute flow endpoint error    optical flow algorithm today    new set    static scene   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University