• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Surface reconstruction from unorganized points (1992)

Cached

  • Download as a PDF

Download Links

  • [www.research.microsoft.com]
  • [research.microsoft.com]
  • [grail.cs.washington.edu]
  • [research.microsoft.com]
  • [graphics.stanford.edu]
  • [research.microsoft.com]
  • [research.microsoft.com]
  • [graphics.pixar.com]
  • [research.microsoft.com]
  • [www.research.microsoft.com]
  • [research.microsoft.com]
  • [research.microsoft.com]
  • [ftp.cs.washington.edu]
  • [www.stat.washington.edu]
  • [grail.cs.washington.edu]
  • [www.cs.washington.edu]
  • [grail.cs.washington.edu]
  • [www.cs.washington.edu]
  • [www.cs.washington.edu]
  • [www.research.microsoft.com]
  • [ftp.cs.washington.edu]
  • [ftp.cs.washington.edu]
  • [kucg.korea.ac.kr]
  • [www.stat.washington.edu]
  • [formaurbis.stanford.edu]
  • [www-hci.stanford.edu]
  • [graphics.stanford.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Hugues Hoppe , Tony DeRose , Tom Duchamp , John McDonald , Werner Stuetzle
Venue:COMPUTER GRAPHICS (SIGGRAPH ’92 PROCEEDINGS)
Citations:814 - 8 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Hoppe92surfacereconstruction,
    author = {Hugues Hoppe and Tony DeRose and Tom Duchamp and John McDonald and Werner Stuetzle},
    title = {Surface reconstruction from unorganized points},
    booktitle = {COMPUTER GRAPHICS (SIGGRAPH ’92 PROCEEDINGS)},
    year = {1992},
    pages = {71--78},
    publisher = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We describe and demonstrate an algorithm that takes as input an unorganized set of points fx1�:::�xng IR 3 on or near an unknown manifold M, and produces as output a simplicial surface that approximates M. Neither the topology, the presence of boundaries, nor the geometry of M are assumed to be known in advance — all are inferred automatically from the data. This problem naturally arises in a variety of practical situations such as range scanning an object from multiple view points, recovery of biological shapes from two-dimensional slices, and interactive surface sketching.

Keyphrases

surface reconstruction    unorganized point    unknown manifold    two-dimensional slice    unorganized set    xng ir    biological shape    multiple view point    interactive surface sketching    practical situation    simplicial surface   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University