• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

A Simple Proof of the Restricted Isometry Property for Random Matrices (2008)

Cached

  • Download as a PDF

Download Links

  • [www-dsp.rice.edu]
  • [www.dsp.ece.rice.edu]
  • [dsp.rice.edu]
  • [www.cs.wisc.edu]
  • [www.dsp.ece.rice.edu]
  • [dsp.rice.edu]
  • [dsp.rice.edu]
  • [pages.cs.wisc.edu]
  • [www.ece.rice.edu]
  • [users.ece.gatech.edu]
  • [users.ece.gatech.edu]
  • [www.ece.rice.edu]
  • [www.dsp.ece.rice.edu]
  • [www.math.tamu.edu]
  • [www.ece.rice.edu]
  • [mosaic.math.tamu.edu]
  • [imi.cas.sc.edu]
  • [www.ece.rice.edu]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Richard Baraniuk , Mark Davenport , Ronald DeVore , Michael Wakin
Venue:CONSTR APPROX
Citations:625 - 64 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Baraniuk08asimple,
    author = {Richard Baraniuk and Mark Davenport and Ronald DeVore and Michael Wakin},
    title = { A Simple Proof of the Restricted Isometry Property for Random Matrices},
    year = {2008}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We give a simple technique for verifying the Restricted Isometry Property (as introduced by Candès and Tao) for random matrices that underlies Compressed Sensing. Our approach has two main ingredients: (i) concentration inequalities for random inner products that have recently provided algorithmically simple proofs of the Johnson–Lindenstrauss lemma; and (ii) covering numbers for finite-dimensional balls in Euclidean space. This leads to an elementary proof of the Restricted Isometry Property and brings out connections between Compressed Sensing and the Johnson–Lindenstrauss lemma. As a result, we obtain simple and direct proofs of Kashin’s theorems on widths of finite balls in Euclidean space (and their improvements due to Gluskin) and proofs of the existence of optimal Compressed Sensing measurement matrices. In the process, we also prove that these measurements have a certain universality with respect to the sparsity-inducing basis.

Keyphrases

restricted isometry property    simple proof    random matrix    johnson lindenstrauss lemma    euclidean space    random inner product    certain universality    direct proof    main ingredient    simple technique    finite-dimensional ball    concentration inequality    sparsity-inducing basis    measurement matrix    finite ball    elementary proof   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University