• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Symbolic Model Checking: 10^20 States and Beyond (1992)

Cached

  • Download as a PDF

Download Links

  • [www-cad.eecs.berkeley.edu]
  • [www.cs.cmu.edu]
  • [www-2.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [w2.cadence.com]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.cs.ubc.ca]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by J. R. Burch , E. M. Clarke , K. L. McMillan , D. L. Dill , L. J. Hwang
Citations:757 - 41 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Burch92symbolicmodel,
    author = {J. R. Burch and E. M. Clarke and K. L. McMillan and D. L. Dill and L. J. Hwang},
    title = {    Symbolic Model Checking: 10^20 States and Beyond},
    year = {1992}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Many different methods have been devised for automatically verifying finite state systems by examining state-graph models of system behavior. These methods all depend on decision procedures that explicitly represent the state space using a list or a table that grows in proportion to the number of states. We describe a general method that represents the state space symbolical/y instead of explicitly. The generality of our method comes from using a dialect of the Mu-Calculus as the primary specification language. We describe a model checking algorithm for Mu-Calculus formulas that uses Bryant’s Binary Decision Diagrams (Bryant, R. E., 1986, IEEE Trans. Comput. C-35) to represent relations and formulas. We then show how our new Mu-Calculus model checking algorithm can be used to derive efficient decision procedures for CTL model checking, satistiability of linear-time temporal logic formulas, strong and weak observational equivalence of finite transition systems, and language containment for finite w-automata. The fixed point computations for each decision procedure are sometimes complex. but can be concisely expressed in the Mu-Calculus. We illustrate the practicality of our approach to symbolic model checking by discussing how it can be used to verify a simple synchronous pipeline circuit.

Keyphrases

symbolic model checking    decision procedure    ctl model checking    finite state system    finite transition system    simple synchronous pipeline circuit    state-graph model    state space symbolical    state space    efficient decision procedure    system behavior    primary specification language    general method    mu-calculus formula    finite w-automata    bryant binary decision diagram    linear-time temporal logic formula    language containment    ieee trans    weak observational equivalence    fixed point computation    new mu-calculus model    many different method   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University