• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Semantic taxonomy induction from heterogenous evidence (2006)

Cached

  • Download as a PDF

Download Links

  • [www.stanford.edu]
  • [www.stanford.edu]
  • [acl.ldc.upenn.edu]
  • [www.aclweb.org]
  • [verbs.colorado.edu]
  • [aclweb.org]
  • [www.aclweb.org]
  • [aclweb.org]
  • [wing.comp.nus.edu.sg]
  • [aclweb.org]
  • [www.aclweb.org]
  • [wing.comp.nus.edu.sg]
  • [verbs.colorado.edu]
  • [www.robotics.stanford.edu]
  • [www.robotics.stanford.edu]
  • [ai.stanford.edu]
  • [ai.stanford.edu]
  • [www.cs.stanford.edu]
  • [nlp.stanford.edu]
  • [www-nlp.stanford.edu]
  • [xenon.stanford.edu]
  • [www.cs.stanford.edu]
  • [www.robotics.stanford.edu]
  • [ai.stanford.edu]
  • [xenon.stanford.edu]
  • [ai.stanford.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Rion Snow
Venue:In Proceedings of COLING/ACL 2006
Citations:216 - 1 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Snow06semantictaxonomy,
    author = {Rion Snow},
    title = {Semantic taxonomy induction from heterogenous evidence},
    booktitle = {In Proceedings of COLING/ACL 2006},
    year = {2006},
    pages = {801--808}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We propose a novel algorithm for inducing semantic taxonomies. Previous algorithms for taxonomy induction have typically focused on independent classifiers for discovering new single relationships based on hand-constructed or automatically discovered textual patterns. By contrast, our algorithm flexibly incorporates evidence from multiple classifiers over heterogenous relationships to optimize the entire structure of the taxonomy, using knowledge of a word’s coordinate terms to help in determining its hypernyms, and vice versa. We apply our algorithm on the problem of sense-disambiguated noun hyponym acquisition, where we combine the predictions of hypernym and coordinate term classifiers with the knowledge in a preexisting semantic taxonomy (WordNet 2.1). We add 10, 000 novel synsets to WordNet 2.1 at 84 % precision, a relative error reduction of 70 % over a non-joint algorithm using the same component classifiers. Finally, we show that a taxonomy built using our algorithm shows a 23 % relative F-score improvement over WordNet 2.1 on an independent testset of hypernym pairs. 1

Keyphrases

semantic taxonomy induction    heterogenous evidence    component classifier    vice versa    textual pattern    previous algorithm    novel synset    taxonomy induction    non-joint algorithm    new single relationship    coordinate term classifier    hypernym pair    independent testset    multiple classifier    semantic taxonomy    novel algorithm    word coordinate term    independent classifier    preexisting semantic taxonomy    heterogenous relationship    relative error reduction    sense-disambiguated noun hyponym acquisition    entire structure   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University