• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Using Paraphrases for Parameter Tuning in Statistical Machine Translation

Cached

  • Download as a PDF

Download Links

  • [www.umiacs.umd.edu]
  • [www.desilinguist.org]
  • [www-speech.sri.com]
  • [www.speech.sri.com]
  • [www.umiacs.umd.edu]
  • [www.umiacs.umd.edu]
  • [acl.ldc.upenn.edu]
  • [acl.ldc.upenn.edu]
  • [www.aclweb.org]
  • [www.aclweb.org]
  • [wing.comp.nus.edu.sg]
  • [aclweb.org]
  • [newdesign.aclweb.org]
  • [aclweb.org]
  • [aclweb.org]
  • [wing.comp.nus.edu.sg]
  • [www.statmt.org]
  • [www.mt-archive.info]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Nitin Madnani , Necip Fazil Ayan , Philip Resnik , Bonnie J. Dorr
Citations:41 - 10 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Madnani_usingparaphrases,
    author = {Nitin Madnani and Necip Fazil Ayan and Philip Resnik and Bonnie J. Dorr},
    title = {Using Paraphrases for Parameter Tuning in Statistical Machine Translation},
    year = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Most state-of-the-art statistical machine translation systems use log-linear models, which are defined in terms of hypothesis features and weights for those features. It is standard to tune the feature weights in order to maximize a translation quality metric, using held-out test sentences and their corresponding reference translations. However, obtaining reference translations is expensive. In this paper, we introduce a new full-sentence paraphrase technique, based on English-to-English decoding with an MT system, and we demonstrate that the resulting paraphrases can be used to drastically reduce the number of human reference translations needed for parameter tuning, without a significant decrease in translation quality. 1

Keyphrases

parameter tuning    statistical machine translation    translation quality    new full-sentence paraphrase technique    held-out test sentence    corresponding reference translation    mt system    hypothesis feature    log-linear model    feature weight    significant decrease    human reference translation    reference translation    state-of-the-art statistical machine translation system    english-to-english decoding   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University