• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Kernel-Based Object Tracking (2003)

Cached

  • Download as a PDF

Download Links

  • [www.caip.rutgers.edu]
  • [www.wisdom.weizmann.ac.il]
  • [www.comaniciu.net]
  • [www.soe.ucsc.edu]
  • [www.cim.mcgill.ca]
  • [www.cim.mcgill.ca]
  • [www.wisdom.weizmann.ac.il]
  • [classes.soe.ucsc.edu]
  • [comaniciu.net]
  • [www.xmt.be]
  • [www.cs.drexel.edu]
  • [www.cs.drexel.edu]
  • [web.eecs.umich.edu]
  • [www.caip.rutgers.edu]
  • [coewww.rutgers.edu]
  • [www.caip.rutgers.edu]
  • [www.ee.duke.edu]
  • [www.cs.ucf.edu]
  • [www.cs.ucf.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Dorin Comaniciu , Visvanathan Ramesh , Peter Meer
Citations:899 - 4 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Comaniciu03kernel-basedobject,
    author = {Dorin Comaniciu and Visvanathan Ramesh and Peter Meer},
    title = {Kernel-Based Object Tracking},
    year = {2003}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

A new approach toward target representation and localization, the central component in visual tracking of non-rigid objects, is proposed. The feature histogram based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity functions suitable for gradient-based optimization, hence, the target localization problem can be formulated using the basin of attraction of the local maxima. We employ a metric derived from the Bhattacharyya coefficient as similarity measure, and use the mean shift procedure to perform the optimization. In the presented tracking examples the new method successfully coped with camera motion, partial occlusions, clutter, and target scale variations. Integration with motion filters and data association techniques is also discussed. We describe only few of the potential applications: exploitation of background information, Kalman tracking using motion models, and face tracking. Keywords: non-rigid object tracking; target localization and representation; spatially-smooth similarity function; Bhattacharyya coefficient; face tracking. 1

Keyphrases

kernel-based object tracking    target representation    bhattacharyya coefficient    spatially-smooth similarity function    new method    new approach    presented tracking    face tracking    scale variation    camera motion    local maximum    mean shift procedure    motion model    spatial masking    feature histogram    non-rigid object tracking    isotropic kernel    motion filter    partial occlusion    gradient-based optimization    data association technique    target localization problem    similarity measure    background information    visual tracking    non-rigid object    central component    potential application   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University