• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Unsupervised learning of human action categories using spatial-temporal words (2006)

Cached

  • Download as a PDF

Download Links

  • [visionlab.ece.uiuc.edu]
  • [vision.ai.uiuc.edu]
  • [vision.cs.princeton.edu]
  • [vision.stanford.edu]
  • [www.cs.huji.ac.il]
  • [cs.stanford.edu]
  • [www.cs.huji.ac.il]
  • [staff.science.uva.nl]
  • [staff.science.uva.nl]
  • [vision.ai.uiuc.edu]
  • [vision.cs.princeton.edu]
  • [vision.stanford.edu]
  • [visionlab.ece.uiuc.edu]
  • [cs.stanford.edu]
  • [cs.stanford.edu]
  • [vision.stanford.edu]
  • [www.cs.sfu.ca]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Juan Carlos Niebles , Hongcheng Wang , Li Fei-fei
Venue:In Proc. BMVC
Citations:494 - 8 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Niebles06unsupervisedlearning,
    author = {Juan Carlos Niebles and Hongcheng Wang and Li Fei-fei},
    title = {Unsupervised learning of human action categories using spatial-temporal words},
    booktitle = {In Proc. BMVC},
    year = {2006}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Imagine a video taken on a sunny beach, can a computer automatically tell what is happening in the scene? Can it identify different human activities in the video, such as water surfing, people walking and lying on the beach? To automatically classify or localize different actions in video sequences is very useful for a variety of tasks, such as video surveillance, objectlevel video summarization, video indexing, digital library organization, etc. However, it remains a challenging task for computers to achieve robust action recognition due to cluttered background, camera motion, occlusion, and geometric and photometric variances of objects. For example, in a live video of a skating competition, the skater moves rapidly across the rink, and the camera also moves to follow the skater. With moving camera, non-stationary background, and moving target, few vision algorithms could identify, categorize and

Keyphrases

human action category    spatial-temporal word    video sequence    camera motion    photometric variance    vision algorithm    water surfing    non-stationary background    different action    digital library organization    different human activity    challenging task    objectlevel video summarization    video surveillance    sunny beach    cluttered background    live video    video indexing    robust action recognition   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University