• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Histograms of Oriented Gradients for Human Detection (2005)

Cached

  • Download as a PDF

Download Links

  • [www.acemedia.org]
  • [luthuli.cs.uiuc.edu]
  • [people.csail.mit.edu]
  • [nichol.as]
  • [lear.inrialpes.fr]
  • [lear.inrialpes.fr]
  • [www.ics.uci.edu]
  • [www.cs.sfu.ca]
  • [www.cs.sfu.ca]
  • [www.cs.cmu.edu]
  • [nichol.as]
  • [www.cs.cmu.edu]
  • [www-2.cs.cmu.edu]
  • [www-ljk.imag.fr]
  • [nichol.as]
  • [www.ics.uci.edu]
  • [www.micc.unifi.it]
  • [www.ino.it]
  • [dircweb.king.ac.uk]
  • [www.cs.sfu.ca]
  • [dtpapers.googlecode.com]
  • [luthuli.cs.uiuc.edu]
  • [www.cs.cmu.edu]
  • [www.ino.it]
  • [www-cs.ccny.cuny.edu]
  • [nichol.as]
  • [www-ljk.imag.fr]
  • [www-2.cs.cmu.edu]
  • [www.vis.uky.edu]
  • [www.navneetdalal.com]
  • [www.navneetdalal.com]
  • [www.csd.uwo.ca]
  • [sse.tongji.edu.cn]
  • [www.csd.uwo.ca]
  • [hal.inria.fr]
  • [hal.archives-ouvertes.fr]
  • [hal.inria.fr]
  • [hal.inria.fr]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Navneet Dalal , Bill Triggs
Venue:In CVPR
Citations:3735 - 9 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Dalal05histogramsof,
    author = {Navneet Dalal and Bill Triggs},
    title = {Histograms of Oriented Gradients for Human Detection},
    booktitle = {In CVPR},
    year = {2005},
    pages = {886--893}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We study the question of feature sets for robust visual object recognition, adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of Histograms of Oriented Gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds. 1

Keyphrases

human detection    oriented gradient    feature set    challenging dataset containing    pose variation    fine orientation binning    descriptor block    large range    high-quality local contrast normalization    annotated human image    robust visual object recognition    fine-scale gradient    near-perfect separation    linear svm    new approach    coarse spatial binning    original mit pedestrian database    good result    test case   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University