• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network (2003)

Cached

  • Download as a PDF

Download Links

  • [acl.ldc.upenn.edu]
  • [nlp.cs.berkeley.edu]
  • [clair.si.umich.edu]
  • [www.aclweb.org]
  • [wing.comp.nus.edu.sg]
  • [ucrel.lancs.ac.uk]
  • [www.aclweb.org]
  • [aclweb.org]
  • [aclweb.org]
  • [newdesign.aclweb.org]
  • [wing.comp.nus.edu.sg]
  • [ilpubs.stanford.edu:8090]
  • [www.cs.berkeley.edu]
  • [www.eecs.berkeley.edu]
  • [nlp.stanford.edu]
  • [www-nlp.stanford.edu]
  • [nlp.stanford.edu]
  • [nlp.stanford.edu]
  • [www-nlp.stanford.edu]
  • [nlp.stanford.edu]
  • [www-nlp.stanford.edu]
  • [www.ling.helsinki.fi]
  • [nlp.stanford.edu]
  • [www-nlp.stanford.edu]
  • [www.ling.helsinki.fi]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Kristina Toutanova , Dan Klein , Christopher D. Manning , Yoram Singer
Venue:IN PROCEEDINGS OF HLT-NAACL
Citations:691 - 23 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Toutanova03feature-richpart-of-speech,
    author = {Kristina Toutanova and Dan Klein and Christopher D. Manning and Yoram Singer},
    title = {Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network},
    booktitle = {IN PROCEEDINGS OF HLT-NAACL },
    year = {2003},
    pages = {252--259},
    publisher = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We present a new part-of-speech tagger that demonstrates the following ideas: (i) explicit use of both preceding and following tag contexts via a dependency network representation, (ii) broad use of lexical features, including jointly conditioning on multiple consecutive words, (iii) effective use of priors in conditional loglinear models, and (iv) fine-grained modeling of unknown word features. Using these ideas together, the resulting tagger gives a 97.24% accuracy on the Penn Treebank WSJ, an error reduction of 4.4% on the best previous single automatically learned tagging result.

Keyphrases

cyclic dependency network    feature-rich part-of-speech tagging    conditional loglinear model    broad use    dependency network representation    effective use    explicit use    tag context    lexical feature    unknown word feature    penn treebank wsj    fine-grained modeling    following idea    error reduction    new part-of-speech tagger    multiple consecutive word   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University