• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Image Parsing: Unifying Segmentation, Detection, and Recognition (2005)

Cached

  • Download as a PDF

Download Links

  • [www.stat.ucla.edu]
  • [www.fias.uni-frankfurt.de]
  • [fias.uni-frankfurt.de]
  • [users.loni.ucla.edu]
  • [www.stat.ucla.edu]
  • [fias.uni-frankfurt.de]
  • [users.loni.ucla.edu]
  • [www.loni.ucla.edu]
  • [users.loni.ucla.edu]
  • [users.loni.ucla.edu]
  • [www.stat.ucla.edu]
  • [www.stat.ucla.edu]
  • [www.stat.ucla.edu]
  • [www.stat.ucla.edu]
  • [www.stat.ucla.edu]
  • [www.stat.ucla.edu]
  • [www.stat.ucla.edu]
  • [www.stat.ucla.edu]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www-2.cs.cmu.edu]
  • [cvcl.mit.edu]
  • [www.stat.ucla.edu]
  • [www-2.cs.cmu.edu]
  • [lear.inrialpes.fr]
  • [www.stat.ucla.edu]
  • [www.cs.cmu.edu]
  • [www-prima.inrialpes.fr]
  • [www.inrialpes.fr]
  • [www-2.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [www.usc.edu]
  • [www.cs.ucf.edu]
  • [www.cs.cmu.edu]

  • Other Repositories/Bibliography

  • CiteULike
  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Zhuowen Tu , Xiangrong Chen , Alan L. Yuille , Song-Chun Zhu
Citations:233 - 22 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Tu05imageparsing:,
    author = {Zhuowen Tu and Xiangrong Chen and Alan L. Yuille and Song-Chun Zhu},
    title = {Image Parsing: Unifying Segmentation, Detection, and Recognition},
    year = {2005}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

In this paper we present a Bayesian framework for parsing images into their constituent visual patterns. The parsing algorithm optimizes the posterior probability and outputs a scene representation in a "parsing graph", in a spirit similar to parsing sentences in speech and natural language. The algorithm constructs the parsing graph and re-configures it dynamically using a set of reversible Markov chain jumps. This computational framework integrates two popular inference approaches -- generative (top-down) methods and discriminative (bottom-up) methods. The former formulates the posterior probability in terms of generative models for images defined by likelihood functions and priors. The latter computes discriminative probabilities based on a sequence (cascade) of bottom-up tests/filters.

Keyphrases

unifying segmentation    parsing graph    posterior probability    computational framework integrates    constituent visual pattern    reversible markov chain jump    bottom-up test filter    popular inference approach    natural language    generative model    latter computes discriminative probability    bayesian framework    scene representation    likelihood function   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University