• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Minimum Error Rate Training in Statistical Machine Translation (2003)

Cached

  • Download as a PDF

Download Links

  • [acl.ldc.upenn.edu]
  • [acl.ldc.upenn.edu]
  • [www.aclweb.org]
  • [www.fjoch.com]
  • [acl.ldc.upenn.edu]
  • [www.mt-archive.info]
  • [aclweb.org]
  • [faculty.washington.edu]
  • [wing.comp.nus.edu.sg]
  • [aclweb.org]
  • [aclweb.org]
  • [ucrel.lancs.ac.uk]
  • [www.aclweb.org]
  • [wing.comp.nus.edu.sg]
  • [aclweb.org]
  • [www.aclweb.org]
  • [static.googleusercontent.com]
  • [aclweb.org]
  • [aclweb.org]
  • [www.aclweb.org]
  • [static.googleusercontent.com]
  • [wing.comp.nus.edu.sg]
  • [www.mt-archive.info]
  • [acl.ldc.upenn.edu]
  • [www-rohan.sdsu.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Franz Josef Och
Citations:757 - 7 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Och03minimumerror,
    author = {Franz Josef Och},
    title = {Minimum Error Rate Training in Statistical Machine Translation},
    year = {2003}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Often, the training procedure for statistical machine translation models is based on maximum likelihood or related criteria. A general problem of this approach is that there is only a loose relation to the final translation quality on unseen text. In this paper, we analyze various training criteria which directly optimize translation quality.

Keyphrases

minimum error rate training    statistical machine translation    statistical machine translation model    various training criterion    loose relation    translation quality    final translation quality    unseen text    maximum likelihood    training procedure    general problem   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University