@MISC{Perez06by, author = {Gerardo Barroeta Perez and Joseph A. Paradiso and Gerardo Barroeta Prez}, title = {by}, year = {2006} }
Share
OpenURL
Abstract
The idea of an Artificial Sensate Skin device that mimics the characteristics and functions of its analogous living tissue whether human or animal is not new. Yet, most of the current related work has been focused in the development of either materials, flexible electronics or ultra-dense sensing matrices and Wide Area Sensor Networks. The current work describes the design and implementation of a new type of Artificial Sensate Skin. This Artificial Sensate Skin is implemented as a low-power, highly scalable and mechanically flexible Wired Sensor Network. This Skin is composed of one or many Skin Patches which in turn are composed of one or many Skin Nodes. Each node is able to measure Strain, Pressure, Ambient Light, Pressure, Sound and Mechanoreception. Each Skin Patch can either work as a stand-alone device or as a data extraction device if this is attached to a Personal Computer through a different type of device referred to as Brains. Each Skin Node and therefore each Skin Patch is Dynamically Adaptable meaning that they can adapt to external stimuli by either modifying their behavior or by completely changing their code. Construction of a sensate skin in such a modular fashion promises intrinsic scalability, where peer-to-peer