• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Hierarchical phrase-based translation with weighted finite state transducers and . . . (2010)

Cached

  • Download as a PDF

Download Links

  • [mi.eng.cam.ac.uk]
  • [mi.eng.cam.ac.uk]
  • [svr-www.eng.cam.ac.uk]
  • [mi.eng.cam.ac.uk]
  • [svr-www.eng.cam.ac.uk]
  • [mi.eng.cam.ac.uk]
  • [mi.eng.cam.ac.uk]
  • [svr-www.eng.cam.ac.uk]
  • [svr-www.eng.cam.ac.uk]
  • [mi.eng.cam.ac.uk]
  • [www.mt-archive.info]
  • [newdesign.aclweb.org]
  • [wing.comp.nus.edu.sg]
  • [aclweb.org]
  • [aclweb.org]
  • [www.aclweb.org]
  • [wing.comp.nus.edu.sg]
  • [aclweb.org]
  • [wing.comp.nus.edu.sg]
  • [www.aclweb.org]
  • [aclweb.org]
  • [aclweb.org]
  • [www.aclweb.org]
  • [wing.comp.nus.edu.sg]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Adria de Gispert, Gonzalo Iglesias , Graeme Blackwood , Eduardo R. Banga , William Byrne
Venue:IN PROCEEDINGS OF HLT/NAACL
Citations:48 - 20 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Gispert10hierarchicalphrase-based,
    author = {Adria de Gispert and Gonzalo Iglesias and Graeme Blackwood and Eduardo R. Banga and William Byrne},
    title = { Hierarchical phrase-based translation with weighted finite state transducers and . . . },
    booktitle = {IN PROCEEDINGS OF HLT/NAACL},
    year = {2010},
    pages = {433--441},
    publisher = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

In this article we describe HiFST, a lattice-based decoder for hierarchical phrase-based translation and alignment. The decoder is implemented with standard Weighted Finite-State Transducer (WFST) operations as an alternative to the well-known cube pruning procedure. We find that the use of WFSTs rather than k-best lists requires less pruning in translation search, resulting in fewer search errors, better parameter optimization, and improved translation performance. The direct generation of translation lattices in the target language can improve subsequent rescoring procedures, yielding further gains when applying long-span language models and Minimum Bayes Risk decoding. We also provide insights as to how to control the size of the search space defined by hierarchical rules. We show that shallow-n grammars, low-level rule catenation, and other search constraints can help to match the power of the translation system to specific language pairs.

Keyphrases

hierarchical phrase-based translation    weighted finite state transducer    low-level rule catenation    specific language pair    minimum bayes risk    subsequent rescoring procedure    translation search    improved translation performance    target language    search space    well-known cube    standard weighted finite-state transducer    shallow-n grammar    translation lattice    lattice-based decoder    translation system    long-span language model    search error    search constraint    parameter optimization    hierarchical rule    direct generation    k-best list   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University