• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

DMCA

Using Lexical Chains for Text Summarization (1997)

Cached

  • Download as a PDF

Download Links

  • [acl.ldc.upenn.edu]
  • [www.cs.swarthmore.edu]
  • [web.cs.swarthmore.edu]
  • [www-poleia.lip6.fr]
  • [www-connex.lip6.fr]
  • [wing.comp.nus.edu.sg]
  • [aclweb.org]
  • [ucrel.lancs.ac.uk]
  • [www.cs.swarthmore.edu]
  • [www.aclweb.org]
  • [wing.comp.nus.edu.sg]
  • [www.cs.bgu.ac.il]
  • [nlp.cs.swarthmore.edu]
  • [nlp.cs.swarthmore.edu]
  • [www.cs.columbia.edu]
  • [www.cs.bgu.ac.il]
  • [research.microsoft.com]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Resina Barzilay , Michael Elbadad
Citations:451 - 8 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Barzilay97usinglexical,
    author = {Resina Barzilay and Michael Elbadad},
    title = {Using Lexical Chains for Text Summarization},
    year = {1997}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We investigate one technique to produce a summary of an original text without requiring its full semantic interpretation, but instead relying on a model of the topic progression in the text derived from lexical chains. We present a new algorithm to compute lexical chains in a text, merging several robust knowledge sources: the WordNet thesaurus, a part-of-speech tagger and shallow parser for the ldentification of nominal groups, and a segmentation algorithm derived from (Hearst, 1994) Summarization proceeds in three steps: the original text m first segmented, lexical chains are constructed, strong chains are identified and significant sentences are extracted from the text. We present in this paper empirical results on the identification of strong chain and of significant sentences.

Keyphrases

lexical chain    text summarization    significant sentence    strong chain    original text    nominal group    topic progression    several robust knowledge source    paper empirical result    wordnet thesaurus    new algorithm    part-of-speech tagger    summarization proceeds    full semantic interpretation    segmentation algorithm   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University