• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

The Helmholtz Machine (1995)

Cached

  • Download as a PDF

Download Links

  • [www.gatsby.ucl.ac.uk]
  • [www.variational-bayes.org]
  • [www.gatsby.ucl.ac.uk]
  • [cognet.mit.edu]
  • [ftp.cs.toronto.edu]
  • [www.gatsby.ucl.ac.uk]
  • [ftp.cs.cuhk.hk]
  • [ftp.keck.ucsf.edu]
  • [ftp.ai.mit.edu]
  • [ftp.ai.mit.edu]
  • [www.cs.utoronto.ca]
  • [www.gatsby.ucl.ac.uk]
  • [www.cs.toronto.edu]
  • [learning.cs.toronto.edu]
  • [www.cs.utoronto.ca]
  • [www.cs.toronto.edu]
  • [www.cs.utoronto.ca]
  • [www.gatsby.ucl.ac.uk]
  • [www-clmc.usc.edu]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Peter Dayan , Geoffrey E. Hinton , Radford M. Neal , Richard S. Zemel
Citations:236 - 24 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Dayan95thehelmholtz,
    author = {Peter Dayan and Geoffrey E. Hinton and Radford M. Neal and Richard S. Zemel},
    title = { The Helmholtz Machine},
    year = {1995}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Discovering the structure inherent in a set of patterns is a fundamental aim of statistical inference or learning. One fruitful approach is to build a parameterized stochastic generative model, independent draws from which are likely to produce the patterns. For all but the simplest generative models, each pattern can be generated in exponentially many ways. It is thus intractable to adjust the parameters to maximize the probability of the observed patterns. We describe a way of finessing this combinatorial explosion by maximizing an easily computed lower bound on the probability of the observations. Our method can be viewed as a form of hierarchical self-supervised learning that may relate to the function of bottom-up and top-down cortical processing pathways.

Keyphrases

helmholtz machine    hierarchical self-supervised learning    fruitful approach    observed pattern    parameterized stochastic generative model    independent draw    fundamental aim    structure inherent    generative model    combinatorial explosion    statistical inference    many way    top-down cortical processing pathway   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University