• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

DMCA

Semi-Supervised Learning on Riemannian Manifolds (2004)

Cached

  • Download as a PDF

Download Links

  • [www-connex.lip6.fr]
  • [www.cse.ohio-state.edu]
  • [web.mit.edu]
  • [www.mit.edu]
  • [www.mit.edu]
  • [web.mit.edu]
  • [web.mit.edu]
  • [www-poleia.lip6.fr]
  • [www.public.asu.edu]
  • [www.mit.edu]
  • [web.mit.edu]
  • [web.mit.edu]
  • [people.cs.uchicago.edu]
  • [www.public.asu.edu]
  • [www.mit.edu]
  • [www.mit.edu]
  • [web.eecs.utk.edu]
  • [www.mit.edu]
  • [www.public.asu.edu]
  • [web.cse.ohio-state.edu]
  • [www.mit.edu]
  • [web.eecs.utk.edu]
  • [www.mit.edu]
  • [www.cs.uchicago.edu]
  • [people.cs.uchicago.edu]
  • [www.cs.uchicago.edu]
  • [www2.imm.dtu.dk]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Mikhail Belkin , Partha Niyogi
Citations:192 - 7 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Belkin04semi-supervisedlearning,
    author = {Mikhail Belkin and Partha Niyogi},
    title = {Semi-Supervised Learning on Riemannian Manifolds},
    year = {2004}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We consider the general problem of utilizing both labeled and unlabeled data to improve classification accuracy. Under the assumption that the data lie on a submanifold in a high dimensional space, we develop an algorithmic framework to classify a partially labeled data set in a principled manner. The central idea of our approach is that classification functions are naturally defined only on the submanifold in question rather than the total ambient space. Using the Laplace-Beltrami operator one produces a basis (the Laplacian Eigenmaps) for a Hilbert space of square integrable functions on the submanifold. To recover such a basis, only unlabeled examples are required. Once such a basis is obtained, training can be performed using the labeled data set. Our algorithm models the manifold using the adjacency graph for the data and approximates the Laplace-Beltrami operator by the graph Laplacian. We provide details of the algorithm, its theoretical justification, and several practical applications for image, speech, and text classification.

Keyphrases

riemannian manifold    semi-supervised learning    laplace-beltrami operator    data set    adjacency graph    laplacian eigenmaps    graph laplacian    square integrable function    theoretical justification    text classification    general problem    algorithm model    data lie    high dimensional space    unlabeled example    total ambient space    classification accuracy    principled manner    hilbert space    several practical application    central idea    algorithmic framework    classification function   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University