• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

DMCA

On domination in 2-connected cubic graphs

Cached

  • Download as a PDF

Download Links

  • [www.combinatorics.org]
  • [www.emis.de]
  • [emis.bibl.cwi.nl]
  • [emis.u-strasbg.fr]
  • [www3.combinatorics.org]
  • [www.mat.ub.edu]
  • [siba-sinmemis.unile.it]
  • [www.combinatorics.org]
  • [www.math.ethz.ch]
  • [emis.maths.adelaide.edu.au]
  • [www.maths.tcd.ie]
  • [cs.anu.edu.au]
  • [emis.library.cornell.edu]
  • [www.cirm.univ-mrs.fr]
  • [www.univie.ac.at]
  • [emis.math.tifr.res.in]
  • [www.maths.soton.ac.uk]
  • [www.combinatorics.org]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by B. Y. Stodolsky
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Stodolsky_ondomination,
    author = {B. Y. Stodolsky},
    title = {On domination in 2-connected cubic graphs},
    year = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

In 1996, Reed proved that the domination number, γ(G), of every n-vertex graph G with minimum degree at least 3 is at most 3n/8 and conjectured that γ(H) ≤ ⌈n/3 ⌉ for every connected 3-regular (cubic) n-vertex graph H. In [1] this conjecture was disproved by presenting a connected cubic graph G on 60 vertices with γ(G) = 21 and a sequence {Gk} ∞ k=1 of connected cubic graphs with limk→∞ γ(Gk) |V (Gk)|

Keyphrases

2-connected cubic graph    n-vertex graph    cubic graph    sequence gk    domination number    minimum degree   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University