• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Mesos: A platform for fine-grained resource sharing in the data center (2010)

Cached

  • Download as a PDF

Download Links

  • [mesos.berkeley.edu]
  • [www.eecs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.cmu.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [incubator.apache.org]
  • [www.cs.berkeley.edu]
  • [www.cs.cmu.edu]
  • [www.usenix.org]
  • [www.cs.cmu.edu]
  • [www.usenix.org]
  • [www.usenix.org]
  • [static.usenix.org]
  • [bnrg.cs.berkeley.edu]
  • [people.csail.mit.edu]
  • [www.usenix.org]
  • [static.usenix.org]
  • [www.eecs.berkeley.edu]
  • [security.riit.tsinghua.edu.cn]
  • [www.cs.cmu.edu]
  • [www.usenix.org]
  • [www.usenix.org]
  • [www.usenix.org]
  • [www.usenix.org]
  • [static.usenix.org]
  • [static.usenix.org]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Benjamin Hindman , Andy Konwinski , Matei Zaharia , Ali Ghodsi , Anthony D. Joseph , Randy Katz , Scott Shenker , Ion Stoica
Citations:160 - 23 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@TECHREPORT{Hindman10mesos:a,
    author = {Benjamin Hindman and Andy Konwinski and Matei Zaharia and Ali Ghodsi and Anthony D. Joseph and Randy Katz and Scott Shenker and Ion Stoica},
    title = {Mesos: A platform for fine-grained resource sharing in the data center },
    institution = {},
    year = {2010}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We present Mesos, a platform for sharing commodity clusters between multiple diverse cluster computing frameworks, such as Hadoop and MPI 1. Sharing improves cluster utilization and avoids per-framework data replication. Mesos shares resources in a fine-grained manner, allowing frameworks to achieve data locality by taking turns reading data stored on each machine. To support the sophisticated schedulers of today’s frameworks, Mesos introduces a distributed two-level scheduling mechanism called resource offers. Mesos decides how many resources to offer each framework, while frameworks decide which resources to accept and which computations to run on them. Our experimental results show that Mesos can achieve near-optimal locality when sharing the cluster among diverse frameworks, can scale up to 50,000 nodes, and is resilient to node failures.

Keyphrases

data center    fine-grained resource sharing    present mesos    node failure    distributed two-level scheduling mechanism    data locality    improves cluster utilization    multiple diverse cluster    resource offer    sophisticated scheduler    fine-grained manner    diverse framework    experimental result    near-optimal locality    commodity cluster    many resource    mesos share resource    avoids per-framework data replication   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University