• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Learning Structural SVMs with Latent Variables

Cached

  • Download as a PDF

Download Links

  • [www.cs.cornell.edu]
  • [webdocs.cs.ualberta.ca]
  • [www.cs.cornell.edu]
  • [www.cs.mcgill.ca]
  • [icml2009.org]
  • [www.joachims.org]
  • [www.cs.cornell.edu]
  • [www.cs.cornell.edu]
  • [www.cs.cornell.edu]
  • [www.stat.ucla.edu]
  • [www.stat.ucla.edu]
  • [webdocs.cs.ualberta.ca]
  • [www.cs.cornell.edu]
  • [www.stat.ucla.edu]
  • [www.stat.ucla.edu]
  • [shivani-agarwal.net]
  • [agbs.kyb.tuebingen.mpg.de]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Chun-nam John Yu , Thorsten Joachims
Citations:215 - 2 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Yu_learningstructural,
    author = {Chun-nam John Yu and Thorsten Joachims},
    title = {Learning Structural SVMs with Latent Variables},
    year = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

It is well known in statistics and machine learning that the combination of latent (or hidden) variables and observed variables offer more expressive power than models with observed variables alone. Latent variables

Keyphrases

latent variable    structural svms    observed variable    machine learning    expressive power   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University