

Edge Detector Evolution using

Multidimensional Multiobjective Genetic

Programming

Y Zhang and P I Rockett

Technical Report No. VIE 2006/003
Department of Electronic and Electrical Engineering

University of Sheffield

Edge Detector Evolution using
Multidimensional Multiobjective Genetic

Programming

Yang Zhang hegallis@gmail.com
Peter I. Rockett p.rockett@shef.ac.uk
Laboratory for Image and Vision Engineering, Department of Electronic and Electrical
Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK

Abstract
In this paper we report the evolution of a feature extraction stage for edge detection us-
ing multidimensional multiobjective genetic programming. We have employed train-
ing and validation data produced using a realistic model of the imaging physics to
evolve an n2-to-m mapping which projects the pixel intensities of an n× n image patch
into an m-dimensional decision space. The (near-)optimal value of m is also simul-
taneously determined during evolution. A conventional Fisher linear discriminant is
then used to classify edge patterns. On the independent validation set, the suggested
edge detector is shown to give performance superior to both the well-known conven-
tional Canny detector and to earlier multiobjective genetic programming results which
projected the pattern vector into a one-dimensional decision space. In addition, the su-
periority of the new detector is also demonstrated on a hand-labeled set of real images.

Keywords
Genetic programming, edge detection, multidimensional multiobjective optimization,
edge labeling performance.

1 Introduction

Edge detection is a fundamental operation in image processing and computer vision
which often serves as the first stage for more sophisticated algorithms, such as object
recognition. Although ’global’ Bayesian methods have been explored – for example,
(Tsai et al., 2001) – these are complex and time-consuming therefore local methods
which label an image using only the information contained in an n × n region of sup-
port remain the overwhelmingly preferred approach of image processing practitioners.
(Typically n is odd and in the range 3-9.)

Edge detection has been an active topic of research for over 40 years and more re-
cently has become intertwined with work on the performance assessment of computer
vision algorithms. The common conclusion reached by these performance studies,
e.g. (Bowyer et al., 2001; Heath et al., 1998), is that the edge detection algorithm due
to Canny (1986) is the best currently available method. Canny’s algorithm derives
an optimized linear filtering kernel under the assumptions of a discontinuous step in
image intensity and white noise. By maximizing a function made-up of a localization
term and a signal-to-noise term, Canny proposed the derivative of a Gaussian as close
to the optimal kernel and added two additional post-processing stages: non-maximal

c©200X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

Y.Zhang & P.I.Rockett

suppression (NMS) and hysteresis thresholding; the now commonly adopted version
of Canny’s algorithm is summarized by Jain et al. (1995).

Although several performance evaluation studies (Bowyer et al., 2001; Heath
et al., 1998) have confirmed the commonly held sentiment that the Canny algorithm
is the best currently available edge detection algorithm, very recently Zhang and
Rockett (2006e) have examined the Bayesian (i.e. minimum risk) operating point
of the Canny detector. Zhang & Rockett concluded that the much-vaunted linear
filtering stage – which is the central topic of Canny’s 1986 paper – produces a very
poor detector, yielding error rates that are barely lower than a priori declaring all
pixels to be non-edges without considering the data at all. These authors concluded
that the principal contributors to the performance of the Canny detector were the
post-processing stages of NMS and hysteresis thresholding which appear to have
been added by Canny almost as an afterthought. Viewed from a pattern recognition
standpoint, there is thus much scope for improving on the state-of-the-art in local edge
detection.

A number of workers have attempted to improve on Canny’s detection algorithm
using evolutionary methods. Jalali and Boyce (1995) employed a genetic algorithm
to evolve an improved filtering kernel by optimizing Canny’s localization/detection
criterion. Harris and Buxton (1996) used genetic programming to devise a series
of transformations to detect edges, again optimizing Canny’s criterion although
curiously, Harris and Buxton terminated evolution when they attained a performance
equivalent to Canny’s. More recently, Zhang and Rockett (2005) have used multiob-
jective genetic programming (MOGP) to derive an edge detector with demonstrably
improved labeling performance over the Canny algorithm. This work was further
refined in (Zhang and Rockett, 2006b) where it was concluded that the steady-state
PCGA-based evolutionary algorithm of Kumar and Rockett (2002) was able to find
more compact mappings than the SPEA2-based approach of Bleuler et al. (2001).

Framed as a problem in statistical pattern recognition, the classical edge detection
approach comprises: A feature extraction stage which projects the n × n image
patch into a one-dimensional space in which a simple threshold classifier determines
whether or not to label the central pixel of the odd-sized region of support as an
edgel (edge element). This is depicted in Figure 1 where, in common with the usual
practice in pattern recognition, the feature extraction stages for edge detection have
hitherto been deduced from domain-specific knowledge. For example, since edges
are typically rapid spatial changes in image intensity, numerical approximations to
spatial derivatives are frequently employed. Also, since the detection problem takes
place in the presence of noise, various filters have been used although as Petrou and
Bosdogianni (1999) have pointed-out, the challenge comes in removing noise without
also removing excessive amounts of the underlying high-frequency image information.
For the reasons discussed in Zhang and Rockett (2006e), convolutional approaches
to edge detection appear limited which possibly explains why there has been no
particularly significant performance advance in the last twenty years. Furthermore,
Canny-like criteria are analytically tractable proxies for the ultimate desired goal of
maximizing the labeling performance – which is a discrete problem and therefore not
amenable to the methods of classical optimization.

2 Evolutionary Computation Volume x, Number x

Multiobjective Genetic Programming Edge Detector

Figure 1: Prototypical edge detection system

In terms of applying statistical pattern recognition to edge detection, Zheng et al.
(2004) have reported using a support vector machine (SVM) in which they embedded
the first- and second-order derivatives of image intensity into the kernel mapping. It
is noteworthy, however, that despite using a powerful classification paradigm in the
SVM, these workers report a disappointing performance of only about the same as the
Canny detector; we suspect that in implicitly using a linear filter, the performance of
the SVM was limited by what appears to be the fundamental limit of convolutional
methods (Zhang and Rockett, 2006e).

In this paper we report a significant extension to our previous work on deriving
edge detectors using multiobjective genetic programming (Zhang and Rockett, 2005).
In the previous work we evolved a feature extraction stage which projected the n × n
image patch into a 1D decision space – see Figure 1. In some sense, the induced
feature extraction stage in (Zhang and Rockett, 2005) was a ’drop-in’ replacement for
the ”Feature extraction” stage in Figure 1. In the present work we project the n × n
image patch into an m dimensional decision space where m – the ’optimal’ decision
space dimensionality, which is unknown – is determined as part of the evolutionary
optimization. The fact that the edge labeling decision is being made in a more discrim-
inatory, m-dimensional decision space instead of all the information being projected
down into a 1D decision space has resulted in improved performance. We stress that
we perform no other processing on the raw image pixel intensities – these unmodified
quantities form the direct inputs to our feature extraction stage.

In Section 2 we describe the method for generating the training and test data used
in this work and in Section 3 we describe the multidimensional multiobjective genetic
programming method employed. We present a comparison of results in Section 4 in
which we show that the present results are not only an improvement over Canny but
also over the 1D decision space MOGP results in (Zhang and Rockett, 2005). We also
present results on the hand-labeled USF image sets of Bowyer et al. (2001).

We offer conclusions to the present work in Section 5 as well as making some
suggestions for future work.

Finally, mindful that image processing practitioners cannot reasonably repeat the
computations described here in order to derive useful edge detectors, we present full
implementation details of our suggested edge detector together with numerical values
in an Appendix to this paper.

Evolutionary Computation Volume x, Number x 3

Y.Zhang & P.I.Rockett

2 The Data Model

Clearly the performance of any inductive learning algorithm will reflect the quality of
the data upon which it was trained. In the present context of training an edge detector,
we have basically two choices for a training dataset: Hand labeling of real imagery or
constructing a synthetic dataset based on physical optics.

In terms of the first option, Chen et al. (1996) examined hand-labeled datasets for
training neural network edge detectors and concluded that such a dataset produced
poor learning, principally because the examples did not adequately cover the pattern
space. This can be understood from the fact that real imagery contains coherent
identifiable objects, the edges from which are correlated, leading to a limited sampling
of the pattern space. (These correlations between edge patterns are, of course, the basis
for recognizing objects.) Further, hand labeling is a somewhat subjective process and
therefore the resulting dataset is likely to contain significant numbers of errors which
will impede learning; Zhang and Rockett (2006e) have shown that the hand-labeled
USF dataset (Bowyer et al., 2001) contains numerous errors.

As to generating a synthetic dataset based on a step edge in image intensity, there
is a sentiment in some sections of the image processing community which says that
”real” edges are not step-like and that any results obtained using synthetic data ”have
limited value” (Zhou et al., 1989; Heath et al., 1998). We consider this blanket criticism
of synthetic data to be misguided. Although step-edge models such as those used by
Abdou and Pratt (1979) and Lyvers and Mitchell (1988) are naı̈ve, they do represent
an approximation to the discontinuities in image intensity which occur at an edge.
(Ironically, critics also ignore the fact that Canny’s algorithm is derived from a step
edge in continuous space. We do not, however, deride this since it is an eminently
sensible approximation for Canny to have used in his convolutional approach). Critics
of synthetic datasets also opine that they fail to account for edges in textured regions:
we know of no conventional edge detector which has assumed anything other than
an edge comprising two semi-infinite half planes of uniform intensity. Thus to reject
synthetic data for failing to model effects are not included in alternative analytic
approaches lacks objectivity. That said, the abrupt step edge models used in (Abdou
& Pratt, 1979; Lyvers & Mitchell, 1988) are overly simplistic and we employ here a
much more sophisticated and complete model of the imaging physics to generate the
datasets. Notwithstanding, Section 4 does include results on the hand-labeled USF
datasets (Bowyer et al., 2001) for the sake of completeness.

We start from the assumption that an edge can be defined as an abrupt change
in intensity in a gray-level image. Such a knife-edge model has long been used in
optics. Our imaging model commences with the projection of an abrupt step edge onto
the (presumed) focal plane of a CCD camera; the step is vertical and passes through
the center of the central cell of an odd-sized region of support. See Fig 2(a). Since
we have no prior reason for assuming that an edge has any particular orientation or
alignment relative to the center of the region of support, we generate each instance
of a dataset pattern by applying a randomly chosen rotation in the range [0 . . . 2π]
followed by a random translation of the edge by Δx, y ∈ [−1.5 . . . + 1.5] pixels, where
the pixels in Figure 2 have unit dimension. Since we make no prior assumptions
about the geometry of the edge, all of the random transformations described above
are uniformly distributed. The image intensities on either side of the edge are

4 Evolutionary Computation Volume x, Number x

Multiobjective Genetic Programming Edge Detector

randomly chosen (as floating point quantities) from uniformly-distributed values in
the range [0 . . . 255], again because we have no prior preference about image intensities.

Figure 2: (a) Initial orientation of the knife edge; (b) A typical edge pattern; (c) A typ-
ical non-obvious non-edge pattern. Note that for illustration purposes only, the image
patches are shown as 3 × 3; in actuality, patches of 13 × 13 were used.

At this point we assign a label to the pattern generated above: if, after affine
rotation/translation, the edge still passes through the central cell of the region of
support (Figure 2(b)) we label the pattern as an ’edge’; our objective is to label pixels
which are intersected by an edge. Conversely, if after affine transformation, the edge
does not pass through the central cell (Figure 2(c)) we label this pattern as a non-edge.
(In keeping with the terminology of (Chen et al., 1996), we describe this latter situation
as a ”non-obvious non-edge” since although the pattern is clearly edge-like, we do
not wish to label it as an edge because it does not pass through the central cell). It
transpires that non-obvious non-edges (NONEs) are the principal source of error in
edge detection (Chen et al., 1996; Zhang and Rockett, 2006e).

Up to this stage, the edge is (implicitly) assumed to have been imaged by a perfect
optical system. Although the degradations introduced by diffraction-limited lenses
are well-understood (Born and Wolf, 1999; Rockett, 2003), here we have convolved the
image patch with a 2D Gaussian (σPSF = 1) to simulate effects of the point spread
function (PSF) of the optical system. We have found this to be a good choice based on
experimental observations.

In practice we have used a 13 × 13 region of support – almost certainly larger
than is needed. Part of our motivation here is to explore whether the evolutionary
procedure set-out in Section 3 selects a reasonable subset of pixels to construct an edge
detector.

The next stage in generating a single edge/NONE pattern is to sample the
transformed/blurred intensity function in Figure 2 over each pixel; in practice, this
is carried-out by integration over the square pixel region to yield a 169-dimensional
(13 × 13) pattern which correctly incorporates the effects of convolving the continuous
image intensity function with the sampling function due to the pixel array. We assume
here that the pixels in the CCD array exactly abut although this is not a fundamental

Evolutionary Computation Volume x, Number x 5

Y.Zhang & P.I.Rockett

limitation of the model; indeed possible extension of this work to motion detection
would probably need to include the effects of inter-pixel gaps. Finally, each of the
(floating-point) pixel intensity values was quantized to one of 256 gray levels simulat-
ing the analogue-to-digital conversion process which takes place in framegrabbers.

In constructing the overall datasets, we repeatedly generate edge/NONE patterns
with different, randomly-chosen orientations/translations/intensities which we sup-
plement with image patches of uniform, randomly chosen gray-level. We term these
supplementary uniform patches ”obvious non-edges” since they are very obviously
not edges.

Clearly to facilitate proper training, the composition of the training set has to
reflect the prior probability of edges in real images and we have assumed the typical
figure of 0.05 (5%) for the edge prior. From Figure 2 it is apparent that for every
edge, there should be two non-obvious non-edges (Zhang and Rockett, 2005) and the
training dataset was thus constructed with 10% NONEs. Consequently, each dataset
consisted of 85% uniform patches (100% - 5% - 10% = 85%).

The training dataset comprised 10,000 patterns. The independently generated
validation set consisted of 100,000 patterns. Unlike the training set, each of the
pixel intensities in the validation set was corrupted with Gaussian-distributed noise
(σN = 2) before A-to-D quantization. The noise standard deviation of σN = 2 is typical
of a number of camera/framegrabber combinations examined in this laboratory. It is
not desirable to corrupt the training patterns with noise since a single uncorrupted
pattern can be viewed as the mean of a large number of noise corrupted but otherwise
identical training patterns, assuming zero mean noise. It is thus computationally more
efficient to train with uncorrupted (mean) patterns.

In summary, the synthetic training and validation sets have been constructed
using a highly realistic model of the imaging physics and with proper regard to the
typical distribution of the different sub-classes of pattern. A similar model has been
successfully applied to image feature detection in the past by (Baker et al., 1998; Chen
et al., 1996; Rockett, 2003).

3 Genetic Programming Methodology

In this work we have used multiobjective genetic programming to derive an optimal
feature extraction stage for edge detection – see Figure 1. Two important caveats
should be noted from the outset: Firstly, in this paper we use the terms, ”optimal”
and ”optimization” in the loose sense in which they are conventionally used in the
evolutionary computing literature, namely to mean near- or approximately optimal.
We do not use them in the sense of mathematically optimal since this is an unrealistic
expectation for a stochastic optimization method.

Second, the terms ”feature extraction”, ”feature selection” and ”feature construc-
tion” are variously used in machine learning and related fields, often in contradictory
ways. Here we use the term ”feature extraction” to mean the (possibly non-linear)
combination of (some subset of) raw pattern attributes to form new, more discrimina-
tory features which lie in a decision space. Further, we use the term ”feature selection”

6 Evolutionary Computation Volume x, Number x

Multiobjective Genetic Programming Edge Detector

to mean the selection of the most discriminatory subset of raw pattern attributes
without transformation; feature selection is thus generally a precursor to or component
of feature extraction.

The basic multidimensional multiobjective GP methodology employed here has
been described previously in (Zhang and Rockett, 2006c). To distinguish it from earlier
work in which we used multiobjective GP (MOGP) to project from an p-dimensional
pattern space to a 1D decision space (Zhang and Rockett, 2005, 2006b), we term the
methodology used here multidimensional multiobjective GP (MMOGP). The key advance
over (Zhang and Rockett, 2005) is that here we are mapping the p-dimensional pattern
vector to an m-dimensional decision space, not just a 1D space; p = n × n and m is
determined as part of the optimization.

Central to the evolution of a p-to-m mapping is the adoption of an appropriate
chromosomal structure. Potentially we could evolve m independent feature transform-
ing trees in parallel, the outputs of which could be assembled into an m-dimensional
vector. There are, however, practical difficulties in devising a meaningful set of breed-
ing operators for such a scheme. Consequently we have employed a multitree rep-
resentation similar to (Langdon, 1998) and (Sherrah et al., 1997) – see Figure 3. This
multitree approach also allows us to use the set of highly effective genetic operators we
have employed previously (Zhang and Rockett, 2006d,c).

body

Figure 3: Illustration of the vectorizing tree used in this work; note the role of the root
node in assembling the scalar outputs of the m subtrees into an m-dimensional vector.

The initial population was generated with half of the trees of some maximum di-
mensionality (m = mmax) and the other half of some randomly chosen dimensionality
in the range m = [1 . . .mmax]. Here we have set mmax = 50 although in practice all
non-dominated Pareto solutions had dimensionalities much less than this figure. All
the initial subtrees were generated with random depths in the range [1..7] although
subsequently they were allowed to grow without limit, constrained only by a tree
complexity objective.

To extend our previous work (Zhang and Rockett, 2005, 2006b) to a multitree
chromosome we have added two special node types: root nodes and a dummy nodes.

Evolutionary Computation Volume x, Number x 7

Y.Zhang & P.I.Rockett

As its name implies, a single instance of the root node occurs at the root of
the tree. Essentially, its rôle is to assemble the outputs of the m child trees into an
m-dimensional decision space vector, each tree supplying one element of the vector.
(In terms of implementation, the root node is simply an array of pointers to proper,
feature transforming trees). The root node is illustrated in Figure 3.

A dummy node is a special kind of terminal node which can occur anywhere
in a tree, including as the immediate child of a root node. Since it is treated as a
terminal node, a dummy node can participate fully in the genetic breeding operations
although under tree evaluation, a dummy node always returns the value of zero. Thus
it contributes no discriminatory power whatsoever to the classification task. Further,
during evolution it is the dummy nodes which can alter the dimensionality of the
decision space vector. If the child of a root node changes from being a proper subtree
to a dummy node then this reduces the dimensionality of the decision space vector by
one. If the converse happens, this increases the decision space vector’s dimensionality
by one.

Within our overall classification framework, the p-dimensional raw pattern vector
is transformed into an m-dimensional decision space vector which forms the input to
a Fisher linear discriminant (FLD) classifier. Rather than seek to evolve an integrated
feature extractor/classifier which produces class labels as its final output, we evolve
a feature extraction stage which is coupled to a conventional classifier. We argue
that classifiers are well understood and it makes little sense to devote computational
resources to evolving something which already exists; the full computational resource
should be used to solve the problem for which no other solution exists, namely
feature extraction. We have chosen the FLD as a final classifier because under our
methodology, the classifier has to be trained ab initio within the evolutionary loop to
determine each individual’s fitness. An FLD can be trained rapidly in closed form
(Duda et al., 2001) and thus imposes a negligible time burden on the computation.
Having projected the set of training patterns into the 1D Fisher direction, we use
golden section search to determine the optimal decision threshold.

Our optimization is driven by multiple objectives within a Pareto framework.
The first – and most obvious objective – is to minimize the misclassification error (or
0/1 loss) over the training set. This measure is produced by the trained Fisher linear
discriminant classifier set-out above.

It is well-known that unless steps are taken to prevent it, the size of GP trees tends
to grow excessively leading to very high computational demands, overfitting and poor
generalization; this growth phenomenon is usually termed bloat. Thus the second of
our objectives is to minimize a measure of tree complexity, very much in sympathy with
Occam’s Razor where we prefer simpler solutions of equivalent performance. Ekárt
and Németh (2001) – among others – have shown that minimizing tree complexity in
a multiobjective framework can suppress bloat and we too have used this approach
successfully (Zhang and Rockett, 2005, 2006b,c). For an p-to-1 mapping it is convenient
to use total node count as a measure of tree complexity but for multitrees in which m
is allowed to vary, total node count would impose an unwanted bias in favor of small
trees – trees of small m would tend to have fewer nodes in total. Thus, as the second of

8 Evolutionary Computation Volume x, Number x

Multiobjective Genetic Programming Edge Detector

our objectives we seek to minimize the mean number of nodes per tree:

Complexity =
1

m

m∑

i=1

Size(i)

where Size(i) is the node count of the i-th sub-tree.

Our third and final objective was motivated by the convergence difficulties we
observed in previous work (Zhang and Rockett, 2005). In projecting the pattern vector
to a 1D decision space using only the two objectives of 0/1 loss and the complexity, we
observed that the population commonly stagnated. We successfully surmounted this
difficulty by adding the third objective of minimizing the Bayes error in the projected
1D decision space. This additional objective proved particularly effective in the initial
stages of evolution when the randomly-generated population contained individuals
of rather poor performance. The Bayes error appears much more effective than the
0/1 loss at identifying individuals with slightly greater promise. (We also observed,
however, that the Bayes error alone could produce well-trained solutions with very
poor generalization performance – see (Zhang and Rockett, 2005) for further details.
Thus the Bayes error measure needs to be used in tandem with 0/1 loss, not in its stead).

In the present work, calculating the Bayes error in an m-dimensional decision
space is not practical therefore we have used the PDF overlap in the 1D projected Fisher
direction as a measure of class separability. We have calculated this by histogramming
the two Fisher-projected, class-conditioned PDFs. Although this final objective is not
strictly the Bayes error it has proved to be an easily calculated and effective proxy
quantity which exerts selective pressure to separate the two pattern classes.

The evolutionary framework we have employed is a steady-state methodology
based on the Pareto converging genetic algorithm (Kumar and Rockett, 2002) which
we term Pareto converging genetic programming (PCGP). We have found PCGP to give
better results than competitor (generational) algorithms across a range of applications,
including the present edge detection problem (Zhang and Rockett, 2005, 2006b,a). We
thus select two parents for breeding biased in their Pareto dominance, apply crossover
and mutation and append the two offspring to the population. After sorting, the two
weakest members of the population are discarded. This means that individuals in a
PCGP (and PCGA) population can never regress to poorer solutions as can happen
in generational schemes. Here we have used a population of 500 and terminated
evolution after breeding 20,000 pairs of offspring. (This is roughly equivalent to 100
generations of a generational GA).

The crossover and mutation operators (which are always applied) have been
described previously in Zhang and Rockett (2005, 2006d,c). For crossover, we have
used the depth-fair method (Ito, et al., 1998) where we select a depth, d in a tree, at
which to perform tree splicing; we then select for crossing-over one of the possible
sub-trees at this depth, biased in the subtree complexity. That is, we prefer to exchange
sub-trees with higher node counts. See Ito et al. (1998) and Zhang and Rockett (2006d)
for further details.

In addition, with some probability which we term the sub-tree preservation crossover
probability, we select a restricted version of crossover which we have found to be very

Evolutionary Computation Volume x, Number x 9

Y.Zhang & P.I.Rockett

effective at retaining useful genetic building blocks and speeding convergence (Zhang
and Rockett, 2006c). In subtree preservation crossover, rather than choosing a single
splicing point in each chromosome tree, we crossover each of the individual subtrees.
Thus having selected two parents, A and B for breeding, we perform depth-fair
crossover between subtree 1 of parent A and subtree 1 of parent B, then subtree 2 of A
and subtree 2 of B, and so on up to subtree q, where q = min(mA,mB) and mA,B are
the dimensionalities (m-values) of A and B, respectively.

After crossover, both offspring undergo depth-fair mutation in which a subtree is
selected on exactly the same lines as for crossover; the selected subtree is then replaced
with a new, randomly created subtree. If the root node of a tree is chosen for mutation,
the whole tree is replaced by a new random multitree.

The parameters used in this work are shown in Table 1. The ”IF-THEN-ELSE”
node returns the value of the second child if the first child value is greater than zero,
otherwise the third child value is returned. The ”MAX” node returns the larger value
from its two successors while ”MIN” returns the smaller. If both successor node values
are larger than zero, ”XOR” returns zero, otherwise it returns unity. ”AND” returns
the boolean result from its two operands, returning the value of unity only when both
are non-zero; in the same way, ”OR” returns unity if at least one operands is non-zero.

Terminal set Input pixel values from 13 × 13 image patches
Dummy nodes

10 floating point numbers ∈ {0. . . 1}
Function set SQRT, LOG, POW2, UNARY MINUS,SIN, NOT

-, +, , /, MAX, MIN, XOR, OR, AND
IF-THEN-ELSE (IFTE)

Population size 500
Initial population Half full trees, half random trees

Initial max. tree depth 7
Sub-tree preservation probability 0.2

Max. no. of breeding cycles 20,000
Stopping criterion Max. generations exceeded

Table 1: MMOGP (PCGP) settings used in this work

4 Results

Taking the training set described in Section 2 and the multidimensional multiobjective
GP methodology of Section 3 we evolved a set of edge detectors, each non-dominated
individual on the Pareto front comprising a possible solution which trades off
complexity, 0/1 loss over the training set and the Bayes error-like measure of class
separation. We have run the algorithm 10 times with different initial populations and
obtained rather similar solutions each time.

The set of Pareto front solutions from a single typical run is shown in Figure 4 in
which we plot misclassification error against the total number of nodes in the candidate
solutions. We have plotted total node number rather than the mean subtree complexity

10 Evolutionary Computation Volume x, Number x

Multiobjective Genetic Programming Edge Detector

measure which we actually seek to minimize since this gives a more accurate idea of
the range of solution complexities. (Recall from Section 3 that we only employed the
mean node measure so as not to bias our objective towards generating trees of small
dimensionality.) In Figure 4 a number of individuals with total node counts in the
range 10-15 appear to be dominated; in fact, Figure 4 is a two-dimensional projection of
a three-dimensional Pareto front – we minimize three simultaneous objectives. When
the third (unshown) objective is accounted for, the proper dominance relations are ob-
served; a plot of this 3D space is uninformative and hence not shown here. In addition,
we actually minimize mean node count rather than total node count and taking this
extra factor into account, the solutions in Figure 4 are indeed non-dominated in the 3D
objective space.

Figure 4: Typical two-dimensional projection of the 3D Pareto front showing both train-
ing set and (independent) validation set errors; see text for details.

From Figure 4 we can see that the misclassification errors fall to a roughly constant
value for trees with more than 20 nodes although there is a further small decrease in
error with increasing tree complexity. Reassuringly, the training set and validation set
errors (shown as filled and open circles, respectively) are fairly similar implying that
the evolved detectors are generalizing quite well.

(The results in Figure 4 have been produced with a population size of 500;
repeating the evolution with a population of 1000 produced no better solutions.)

Although the multiple objectives play a pivotal role in shaping the solutions, in
classification problems we are ultimately concerned with obtaining the lowest possible
misclassification error (0/1 loss). In particular, in this problem we have available a

Evolutionary Computation Volume x, Number x 11

Y.Zhang & P.I.Rockett

large (independent) validation set and so we have selected the solution with the lowest
validation error for further study. In fact, we observed that there was a cluster of
solutions which all exhibited very similar validation errors around the minimum, all of
which had dimensionalities (m-values) of 9 or 10. Our final suggested 9-dimensional
solution is shown in Figure 5. We make no attempts to explain or justify the sequence
of evolved operations. It is widely accepted in the evolutionary computing community
that interpreting GP trees is usually very difficult or impossible. Other than the
phenomenological observation that this sequence of processing steps works and – as
we show below – produces superior quantitative results, we can offer no justification
for our solution. The largely phenomenological nature of genetic programming is
arguably a major reservation about the technique: it provides effective solutions
without giving insight. That said, it is interesting that the tree in Figure 5 uses so many
raw, untransformed pixel values and in fact, does comparatively little processing, as
is apparent from the explicit equations set-out in the Appendix. We make no claims
about the global optimality of this detector, just that it performs significantly better
than the benchmark Canny detector and our previous 1D-MOGP edge detector: it is
the best performing edge detector we have found so far.

(A second, although quite unintended benefit of the simplicity of the final detector
is that it is likely to be quite fast in operation although because this was never a design
objective, we have not investigated this aspect of performance.)

One of the beneficial side-effects of evolution under parsimony pressure is that
we obtain feature selection as part of the process of minimizing tree complexity and
therefore the number of terminals. The suggested detector’s utilization of raw pixels
over the 13 × 13 image patch is shown in Figure 6 from which it can be seen that,
apart from an intuitively pleasing use of pixels around the center of the image patch
where one would expect the greatest amount of edge discriminating information
to be found, there appears to be an asymmetric distribution of selected pixels with
a pronounced NW-SE bias. This asymmetry is somewhat at odds with our prior
notion of an edge having no preferred orientation and leads us to speculate that we
could improve performance by constraining the evolution to symmetrical groupings
of pixels. Embedding a priori knowledge in GP could further improve the outcome
although there is always the danger of carrying this process to far. This remains an
area for future research.

The validation error of our best performing tree is shown in Table 2 together with
the performance of the Canny algorithm (with and without non-maximal suppression)
and the 1D-MOGP detector reported in (Zhang & Rockett, 2005b). In Table 2 neither of
the multiobjective GP techniques has employed NMS.

It is clear from Table 2 that the present MMOGP technique yields the best per-
formance followed by the 1 D-MOGP method (Zhang & Rockett, 2005b) with Canny
yielding the worst, even after NMS postprocessing; the Canny detector was operated
at its point of minimum Bayes risk (Zhang and Rockett, 2006e). The differences
between these results are statistically significant to at least the 99% confidence level.

In addition to obtaining results on a physically realistic synthetic dataset, we
also report both quantitative and qualitative results on the hand-labeled USF test

12 Evolutionary Computation Volume x, Number x

Multiobjective Genetic Programming Edge Detector

Figure 5: The final suggested edge detecting tree

images (Bowyer et al., 2001). The use of these images requires a caveat since we have
previously shown (Zhang and Rockett, 2006e) that the censoring of the data together
with labeling errors can produce some inconsistent results. Nonetheless, we include
these results for the sake of completeness.

Since postprocessing stages like non-maximal suppression (NMS) can significantly
improve the performance of the Canny algorithm, we have also devised an NMS post-
processing scheme for our GP-generated detectors. NMS can thin edge maps to single
pixel width lines by reducing the false positive labelings (Zhang and Rockett, 2006e).
Our GP detectors – both MOGP and MMOGP – classify edges with respect to a thresh-
old in the projected Fisher direction; we take the ’distance’ of an individual edgel’s
response from this threshold as a measure of edge response. The greater the distance
from the threshold value, the more certain we are about the correctness of the assigned
label. Using a conventional image processing difference-of-boxes operator, we estimate
the orientation of the edge which we quantize into one of eight directions. We then
examine the edge response of the central pixel and the two pixels on either side of this
central pixel (approximately) normal to the edge; the response of the central pixel is

Evolutionary Computation Volume x, Number x 13

Y.Zhang & P.I.Rockett

Figure 6: Pixel utilization across the 13 × 13 image patch in the final suggested edge
detecting tree

Method Classification Error
MMOGP w/o NMS 0.012

1D GP w/o NMS (Zhang & Rockett, 2005b) 0.0264
Canny w/o NMS 0.0496
Canny with NMS 0.0436

Table 2: Classification error comparisons for Canny, 1D-MOGP (Zhang and Rockett,
2005) and the present MMOGP methods.

set to zero if its value is not the largest of the three examined responses (Jain et al., 1995).

The image labeling results from the USF data are shown in Figures 7 to 10. In this
sequence of figures, (a) is the original image, (b) is the labeled ground truth image, (c)
is the Canny edge map, (d) is the 1D-MOGP edge map, (e) is the MMOGP edge map,
(f) is the Canny result + NMS, (g) is the 1D-MOGP result + NMS and (h) is the MMOGP
result + NMS. The Canny threshold (both with and without NMS) were determined
independently for each image by minimizing the Bayes risk under the assumption of
equal costs for false positives and true negatives; we have no reason to suppose that
one sort of error is any more important than another and so we take a neutral stance on
the relative costs of errors. On the other hand, the labeling thresholds in both the GP
detectors were fixed by the evolutionary learning procedure under the assumptions of
a constant 5% edge prior.

From comparing the raw edge maps (c), (d) and (e) in Figures 7 to 10, a number
of points become apparent. Firstly, the Canny edge maps (c) are very sparse since
this detector has been shown to be poor without postprocessing stages (Zhang
and Rockett, 2006e). Comparing the edge maps of 1D-MOGP detector (Zhang and
Rockett, 2005, 2006b) in (d) with the present MMOGP method in (e), it is clear that
the MMOGP algorithm labels more perceptual edges and fewer false positives.

14 Evolutionary Computation Volume x, Number x

Multiobjective Genetic Programming Edge Detector

Quantitatively, this observation is confirmed in Tables 3 to 5. Thus in terms of the raw
edge maps, the results on the USF imagery confirm the conclusions drawn from Table 2.

Figure Edge Prior Without NMS With NMS
TP FP TP FP

7 0.087 0.0003 0.0001 0.3821 0.0466
8 0.080 0.0204 0.0003 0.4326 0.0695
9 0.211 0.0142 0.0063 0.3886 0.0061
10 0.066 0.0048 0.0003 0.3580 0.0049

Table 3: Canny [TP, FP] operating points for the USF test images

Figure Edge Prior Without NMS With NMS
TP FP TP FP

7 0.087 0.5045 0.0278 0.3657 0.0083
8 0.080 0.4151 0.0298 0.3388 0.0052
9 0.211 0.6228 0.0129 0.4433 0.00036
10 0.066 0.5581 0.0246 0.3415 0.0047

Table 4: 1D-MOGP [TP, FP] operating points for the USF test images

Figure Edge Prior Without NMS With NMS
TP FP TP FP

7 0.087 0.7358 0.0215 0.6561 0.0090
8 0.080 0.7219 0.0151 0.6617 0.0027
9 0.211 0.7727 0.0110 0.6674 0.0013
10 0.066 0.6496 0.0175 0.3801 0.0005

Table 5: MMOGP [TP, FP] operating points for the USF test images

Comparisons of the labeling results after NMS are shown in the (f), (g) and (h)
sub-figures. Clearly the Canny results display significant numbers of false positives.
After NMS, the MMOGP detector also shows obviously fewer false positives in
Figure 7 and a somewhat smaller false positive advantage in Figure 8 compared to the
1D-MOGP approach. In the rather cluttered scenes in Figures 9 and 10, MMOGP yields
rather more false positives than 1D-MOGP. On the other hand, MMOGP consistently
attains much better true positive rates across all four images. Again, these data are
summarized in Tables 3 – 5. It is noteworthy that the stapler image in Figure 10 proves
somewhat more problematic than the others although the reason for this is not clear.
Possibly the number of labeling errors is particularly high for this image.

The Bayes risk values for all three detectors, with and without NMS are shown in
Table 6. For the case of the Canny detector, the risk values are the lowest which can be
attained by adjusting the labeling threshold. It can be seen that MMOGP returns the
lowest risk across all four images, both without or with NMS. For the two GP-based

Evolutionary Computation Volume x, Number x 15

Y.Zhang & P.I.Rockett

detectors, NMS actually makes the risk worse for the drinking fountain image (Fig-
ure 9). The Bayes risk is a weighted sum of the risk of true negatives (missed edges)
and the risk of false positives (mislabeled non-edges), where the relative weightings
are determined by the edge prior. This increase in risk is due to the drinking fountain
image having a rather high prior of 0.221 whereas both GP detectors were trained
assuming an edge prior of 0.05. NMS will decrease the false positive rate but increase
the true negative rate; due to the effective weightings on these terms, the overall Bayes
risk increases after NMS.

Figure Without NMS Without NMS
MMOGP 1D-MOGP Canny MMOGP 1D-MOGP Canny

7 0.06054 0.06848 0.0871 0.03825 0.06276 0.09630
8 0.03612 0.07420 0.0786 0.02960 0.05768 0.10933
9 0.05664 0.08977 0.2129 0.07120 0.11774 0.13381
10 0.03951 0.05214 0.06596 0.04173 0.04785 0.04694

Table 6: Bayes risk comparisons for the USF test images

5 Conclusions and Future Work

In this paper we have reported the evolution of a feature extraction stage for edge
detection using multidimensional multiobjective genetic programming. Employing a
realistic model of the imaging physics, we have generated both training and validation
datasets and used these to evolve a p-to-m mapping (p = n × n) which projects the
pixel intensities of the image patch into an m-dimensional decision space; the value
of m is also optimized in this process. Within a multiobjective Pareto framework we
have minimized: a Bayes error-like measure which has proved successful in speeding
convergence, the misclassification error over the training set and a measure of tree
complexity.

The suggested edge detector has been shown by means of an independent vali-
dation set to provide superior performance to both the conventional Canny detector
and to earlier multiobjective GP work which projected the pattern vector into a 1D
decision space (Zhang and Rockett, 2005). In addition, we have used the hand-labeled
USF image set to demonstrate the effectiveness of the proposed edge detector on real
imagery.

Feature selection is obtained as a beneficial side-effect in this work since we have
(implicitly) minimized the number of terminal (pixel) values used. Nonetheless, the
final detector’s selection of pixels away from the central cell is rather asymmetric
and therefore rather confounds our initial assumption that edges have no particular
orientation; we might anticipate further improvements in performance if symmetry
can be imposed on the receptive field of pixels. This is an area for future work.

Our image feature detection methodology is not restricted to edges. Indeed Baker
et al. (1998) have reported using a similar data model to detect a range of image
features, albeit in a non-evolutionary approach; Chen and Rockett (1997) have also
reported training neural network corner detectors with this type of data model. It

16 Evolutionary Computation Volume x, Number x

Multiobjective Genetic Programming Edge Detector

is thus an area of future work to apply the present methodology to evolving corner
detectors. More generally, geometric feature detectors (Baker et al., 1998) across a
range of imaging modalities are amenable to this approach.

Appendix

The edge detector proposed here takes the raw pixel intensities from a 13 × 13 patch
to form a 9-dimensional decision space vector, y. Denoting the pixel intensities as Ir,c
where r, c ∈ [−6...+ 6] and the central cell of the 13× 13 patch is given the row/column
indices of (0, 0), the individual elements of y are given by:

y1 = I0,−2
y2 = I+6,0
y3 = I0,−1
y4 = −I−6,−3 × [0.2− I+6,+6]
y5 = I−4,−5
y6 =

√
I−6,−1

y7 = [I0,0 − I−1,−1]
1/4

y8 = − log(I−4,−5)
y9 = min(a, I+5,+1 × I−1,+2)

where:

a =

{
I−1,+1 I+5,+6 > 0
I−2,−4 I+5,+6 ≤ 0

The output of the 9-dimensional tree, y is multiplied by the Fisher projection vec-
tor, f such that the scalar value in the projection direction is given by:

v = f .y

and where the elements of f : fi, i ∈ [1...9] are given in Table 7.

Element Index Element Value
1 -1.2872555339074174 ×10−6

2 -1.3624975402259024 ×10−8

3 4.5661303927836337 ×10−7

4 -3.9071898753929782 ×10−9

5 9.7621791371689665 ×10−7

6 -1.7820932457027433 ×10−5

7 -0.0011925937292865041
8 -1.6771130738254199 ×10−5

9 1.4390194474984800 ×10−6

Table 7: Values of the elements of the Fisher projection vector

Finally, a decision threshold was applied such that if v ≥ 0.0018490142574468711
then the central pixel of the image patch is adjudged to be an edge.

Evolutionary Computation Volume x, Number x 17

Y.Zhang & P.I.Rockett

References

Abdou, I. E. and Pratt, W. K. (1979). Quantitative design and evaluation of enhance-
ment/thresholding edge detectors. Proceedings of the IEEE, 67(5):753–763.

Baker, S., Nayar, S. K., and Murase, H. (1998). Parametric feature detection. International Journal
of Computer Vision, 27(1):27–50.

Bleuler, S., Brack, M., Theile, L., and Zitzler, E. (2001). Multiobjective genetic programming:
Reducing bloat using SPEA2. In Congress on Evolutionary Computation, pages 536–543, Seoul,
Korea. IEEE.

Born, M. and Wolf, E. (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference
and Diffraction of Light. Cambridge University Press, Cambridge.

Bowyer, K. W., Kranenburg, C., and Dougherty, S. (2001). Edge detector evaluation using empir-
ical ROC curves. Computer Vision and Image Understanding, 84(1):77–103.

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 8(6):679–698.

Chen, W.-C. and Rockett, P. I. (1997). Bayesian labelling of corners using a grey-level corner
image model. In Proceedings of IEEE International Conference on Image Processing (ICIP’97), pages
687–690, Santa Barbara, CA. IEEE.

Chen, W.-C., Thacker, N. A., and Rockett, P. I. (1996). An adaptive step edge model for self-
consistent training of a neural network for probabilistic edge labelling. IEE Proceedings – Vision,
Image and Signal Processing, 143(1):41–50.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Recognition. John Wiley and Sons, New
York.

Ekárt, A. and Németh, S. Z. (2001). Selection based on the Pareto nondomination criterion for
controlling code growth in genetic programming. Genetic Programming and Evolvable Machines,
2(1):61–73.

Harris, C. and Buxton, B. (1996). Evolving edge detectors with genetic programming. In 1st
Annual Conference on Genetic Programming, pages 309–314.

Heath, M. D., Sarkar, S., Sanocki, T., and Bowyer, K. W. (1998). Comparison of edge detectors: A
methodology and initial study. Computer Vision and Image Understanding, 69(1):38–54.

Ito, T., Iba, H., and Sato, S. (1998). Non-destructive depth-dependent crossover for genetic pro-
gramming. In 1st European Workshop on Genetic Programming, pages 14–15, Paris, France.

Jain, R. C., Kasturi, R., and Schunk, B. G. (1995). Introduction to Machine Vision. McGraw-Hill.

Jalali, S. and Boyce, J. F. (1995). Determination of optimal general edge detectors by global mini-
mization of a cost function. Image and Vision Computing, 13(9):683–693.

Kumar, R. and Rockett, P. I. (2002). Improved sampling of the Pareto-front in multiobjective
genetic optimizations by steady-state evolution: A Pareto converging genetic algorithm. Evo-
lutionary Computation, 10(3):283–314.

Langdon, W. (1998). Genetic Programming and Data Structures: Genetic Programming + Data Struc-
tures = Automatic Programming! Kluwer Series on Genetic Programming. Kluwer, Boston, MA.

Lyvers, E. P. and Mitchell, O. R. (1988). Precision edge contrast and orientation estimation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 10(6):927–937.

Petrou, M. and Bosdogianni, P. (1999). Image Processing: The Fundamentals. John Wiley and Sons,
Chichester, UK.

18 Evolutionary Computation Volume x, Number x

Multiobjective Genetic Programming Edge Detector

Rockett, P. I. (2003). Performance assessment of feature detection algorithms: A methodology
and case study on corner detectors. IEEE Transactions on Image Processing, 12(11):1668–1676.

Sherrah, J. R., Bogner, R. E., and Bouzerdoum, A. (1997). The evolutionary pre-processor: Au-
tomatic feature extraction for supervised classification using genetic programming. In 2nd
Annual Conference on Genetic Programming, pages 304–312, Palo Alto, CA.

Tsai, A., Yezzi, A., and A.S.Willsky (2001). Curve evolution implementation of the Mumford-
Shah functional for image segmentation, denoising, interpolation and magnification. IEEE
Transactions on Image Processing, 10(8):1169–1186.

Zhang, Y. and Rockett, P. (2005). Evolving optimal feature extraction using multi-objective ge-
netic programming: A methodology and preliminary study on edge detection. In Genetic
and Evolutionary Computation Conference (GECCO 2005), pages 795–802, Washington, DC. ACM
Press.

Zhang, Y. and Rockett, P. I. (2006a). Comparison of evolutionary strategies for multi-objective
genetic programming. In IEEE Systems, Man Cybernetics Society Conference on Advances in
Cybernetic Systems (AICS2006), Sheffield, UK.

Zhang, Y. and Rockett, P. I. (2006b). Feature extraction using multi-objective genetic program-
ming. In Jin, Y., editor, Multi-Objective Machine Learning. Springer, Heidelberg.

Zhang, Y. and Rockett, P. I. (2006c). A generic multi-dimensional feature extraction method using
multiobjective genetic programming. Submitted to Evolutionary Computation.

Zhang, Y. and Rockett, P. I. (2006d). A generic optimal feature extraction method using multiob-
jective genetic programming: Methodology and applications. Submitted to IEEE Transactions
on Knowledge and Data Engineering.

Zhang, Y. and Rockett, P. I. (2006e). The Bayesian operating point of the Canny edge detector.
IEEE Transactions on Image Processing, 15(11):3409– 3416.

Zheng, S., Liu, J., and Tian, W. (2004). A new efficient SVM-based edge detection method. Pattern
Recognition Letters, 25(10):1143–1154.

Zhou, Y. T., Venkateshwar, V., and Chellappa, R. (1989). Edge detection and linear feature ex-
traction using a 2D random field model. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(1):84–95.

Evolutionary Computation Volume x, Number x 19

Y.Zhang & P.I.Rockett

(a) (b)

(c) (d

(e) (f)

(g) (h)

Figure 7: (a) to (h) illustrate the comparisons from the Canny edge detector and 1D-
MOGP and MMOGP.

20 Evolutionary Computation Volume x, Number x

Multiobjective Genetic Programming Edge Detector

(a) (b)

(c) (d

(e) (f)

(g) (h)

Figure 8: (a) to (h) illustrate the comparisons from the Canny edge detector and 1D-
MOGP and MMOGP

Evolutionary Computation Volume x, Number x 21

Y.Zhang & P.I.Rockett

(a) (b)

(c) (d

(e) (f)

(g) (h)

Figure 9: (a) to (h) illustrate the comparisons from the Canny edge detector and 1D-
MOGP and MMOGP

22 Evolutionary Computation Volume x, Number x

Multiobjective Genetic Programming Edge Detector

(a) (b)

(c) (d

(e) (f)

(g) (h)

Figure 10: (a) to (h) illustrate the comparisons from the Canny edge detector and 1D-
MOGP and MMOGP

Evolutionary Computation Volume x, Number x 23

