
Designing and Prototyping Multimodal Commands

Marie-Luce Bourguet

Queen Mary, University of London, Mile End Road, London, E1 4NS, UK

mlb@dcs.qmul.ac.uk

Abstract: Designing and implementing multimodal applications that take advantage of several recognition-
based interaction techniques (e.g. speech and gesture recognition) is a difficult task. The goal of our research is to
explore how simple modelling techniques and tools can be used to support the designers and developers of
multimodal systems. In this paper, we discuss the use of finite state machines (FSMs) for the design and
prototyping of multimodal commands. In particular, we show that FSMs can help designers in reasoning about
synchronization patterns problems. Finally, we describe an implementation of our FSM-based approach, in a
toolkit whose aim is to facilitate the iterative process of designing, prototyping and testing multimodality.

Keywords: multimodal commands, synchronisation patterns, finite state machines, design, prototyping, toolkit

1 Introduction
Multimodal interaction refers to interaction with the
virtual and physical environment through natural
modes of communication such as speech, body
gestures, handwriting, graphics or gaze. Recent
developments in recognition-based interaction
technologies (e.g. speech and gesture recognition)
have opened a myriad of new possibilities for the
design and implementation of multimodal systems.
However, our lack of understanding of how these
new modes of interaction can be best combined in
the user interface often leads to interface designs
with poor usability.

In order to help designers, some attempts have
been made to elicit relationships between different
interaction techniques. The CARE properties for
example (Coutaz, 1995) are a framework for
reasoning about multimodal interaction from both the
user and the system perspectives. But, however
useful this framework may be, it does not offer rapid
and practical solutions to designers. Moreover,
multimodal systems must be equipped with adequate
software architectures to combine the different
modalities. Unfortunately, current models of
architecture, such as (Nigay, 1995) and (Oviatt,
2000) are too generic and complex to serve as
prototyping tools. Designing and implementing
multimodal systems is still a difficult task. In
response to this situation, the goal of our research is

to explore how simple modelling techniques and
tools can be used to support the designers and
developers of multimodal user interfaces.

As a starting point, we have implemented a
toolkit whose aim is to facilitate the design and
prototyping of simple multimodal commands.
According to our definition, a multimodal command
is a combination of several user inputs, used to
activate a particular function of an application (e.g. a
function for moving graphical objects on a computer
display). The user inputs that enter in the expression
of a multimodal command may belong to different
modalities (e.g. speech and gesture). In this paper,
we show that Finite State Machines (FSMs)
constitute a good framework for describing
multimodal commands and for combining sets of
user inputs of different modalities. In particular, we
show that FSMs can help designers in reasoning
about synchronisation patterns problems.

2 Modelling Multimodal
Commands Using Finite State
Machines

Finite State Machines are a well-known technique
for describing and controlling dialogs in graphical
user interfaces (Wasserman, 1985). A FSM typically
consists of states, events, transitions and actions (see
Figure 1). A transition has a source and a target state
and is executed when the FSM is in the source state

mrauterb
Human-Computer Interaction -- INTERACT'03
M. Rauterberg et al. (Eds.)
Published by IOS Press, (c) IFIP, 2003, pp. 717-720

and the event associated with the transition occurs.
Upon the execution of a transition, an action
associated with it can be triggered. Typically, a
machine is initially in a “start” state, as user inputs
arrive, they are compared against the transitions
leaving the current state. If the event matches the
transition, the FSM moves to the state at the other
end of the transition (target state); if no matching
transition is found, the FSM usually moves to a
special error state.

Figure 1: Finite State Machine (FSM)

According to (Hudson, 1992), controlling a

complete dialog with FSMs can present some
significant drawbacks (such as promoting the use of
modes), but FSMs are very appropriate for
controlling dialogs at the command level. We show
here that FSMs are also useful for modelling
multimodal commands.

Figure 2 illustrates how different multimodal
commands can be modelled by simple FSMs. The
first FSM (Figure 2) represents a multimodal
command for “moving an object” that is specified by
the following sequence of inputs: mouse-press on an
object, a mouse-move (eventually followed by
several optional mouse-move) and a mouse-release.
Alternatively, the second FSM represents another
multimodal command to activate the same function,
but characterized by a different sequence of inputs:
mouse-press then mouse-release on an object, speech
input “move”, and finally mouse-press then mouse-
release on a target position.

Figure 2: Two different multimodal commands to

describe the function “ moving an object” .

When designing multimodal commands,

one important task is the specification of the
synchronization requirements. The aim is to
guarantee that users will be able to activate the
commands in a natural and spontaneous manner. In
human-human interaction, the temporal synchrony of
speech and hand gestures has been analysed for
different languages. In human-computer interaction

however, little experimental evidence is currently
available for reasoning about synchronization
requirements (Oviatt, 1997), (Bourguet, 1997). In
practice, a user can produce inputs in a sequential
(e.g. with pen input completed before speech begins)
or simultaneous manner (when both inputs show
some temporal overlap).
 FSMs constitute a good framework for
testing different synchronization patterns. For
example, Figure 3 describes a speech and pen
“ move” command where many different
synchronisation patterns are represented. The top
branch of the FSM (Figure 3) starts with a “ speech
move” event, allowing users to initiate the command
using speech. In contrast, the bottom branch starts
with a “ mouse-press” event, allowing users to use the
pen first. This initial “ mouse-press” event can then
be followed by either a “ mouse-move” input or a
“ speech move” input. According to this
representation, users are thus given the possibility to
organize their sequence of inputs in several ways and
following different synchronization patterns. In other
words, with such a representation of a command,
users are free to deliver inputs in their preferred
order (sequentially or simultaneously, pen first or
speech first).

Figure 3: FSM modelling a “ move” speech

and pen command where many
synchronisation patterns are represented.

The interaction is unconstrained.

Figure 4 shows another FSM where only
one synchronisation pattern is now allowed.
According to this FSM, users must use the pen first
and pronounce the “ speech move” event before the
sequence of pen inputs is finished. Such an FSM has
for effect to constrain users in their usage of the
modalities.

Figure 4: FSM modelling a “ move” speech

and pen command where only one
synchronisation pattern is allowed.

The interaction is constrained.

We have used FSMs to test the designs of

several graphical applications. For example, for the
purpose of studying spontaneous synchronization
patterns for different interaction styles, we have
implemented an application in which the users were
asked to place famous London landmarks on a map.
Four different interaction styles were implemented:
(1) “ speech-gesture” commands (e.g. to make a
picture appear on the map, the user draws a “ P” and
pronounces the name of the landmark); (2) “ speech-
point” commands (e.g. to resize a picture, the user
points at a picture and says “ smaller”); (3) “ speech-
point-point” commands (e.g. to move an image, the
user says “ move it here” , points at an image and
points at the destination) and (4) “ speech-drag”
commands (e.g. to move an image, the user says
“ move” and drags the image to its desired location).
Different synchronization patterns were
incrementally tested to determine the best possible
synchronization requirements, according to each
interaction style.

3 Toolkit
We have integrated our FSM-based framework in a
toolkit that aims at facilitating the iterative process of
designing, implementing and testing multimodal
commands (Bourguet, 2002). Low-level APIs with
the recognition engines and user inputs management
are both handled in the toolkit in a transparent
manner. Iterative design and declaration of FSMs is
done via a simple graphical editor.

Figure 5 shows the global architecture of
the system. The toolkit comprises two main modules:
the “ Interaction Model” and the “ Multimodal
Engine” to which is connected the core of the
application (where the functions of the application
are implemented).

Figure 5: Toolkit global architecture.

The Interaction Model contains all the FSMs to

be tested. Multimodal commands can be tested one
by one (i.e. the interaction model contains only one
FSM), or several of them can be tested
simultaneously. There is no constraint on the number
of FSMs that an interaction model contains.

The Multimodal Engine is responsible for
controlling the different input channels and
recognition systems (e.g. speech and gesture
recognition systems) and for managing user inputs.
Managing user inputs includes (1) formatting them
so they can be matched with transition events in the
interaction model, (2) handling and dispatching
recognition hypotheses as they are delivered by the
recognition engines. As input management is the
entire responsibility of the Multimodal Engine, the
application (e.g. a graphical application) is not
allowed to handle itself any user input. In
consequence, it is required to send all graphical
events (e.g. mouse press and menu selection) to the
Multimodal Engine.

The Multimodal Engine dispatches user inputs
to all the FSMs of the interaction model. In order to
match a user input with the event of a transition, the
individual elements that compose the event of the
transition are parsed against the constituents of the
user input. Typically, an input starts with the
modality type (e.g. speech, mouse, pen, gesture,
etc.). A speech input may then contain a tag (e.g.
colour), followed by the word or sequence of words
that was pronounced (e.g. “ green”). Similarly, a
gesture input may contain a gesture class (e.g.
command) and a gesture name (e.g. delete). A mouse
input contains an action type (press, release or
move), followed by the x and y coordinates of the
pointer. When an FSM enters a state with which an
action is associated, it communicates to the
application the complete set of user inputs that
allowed it to move from its start state to its current
state. The application is then in charge of evaluating
the action and of deciding whether it should be
executed or not. For example, when the user presses
a mouse button (transition event), an action “ select
object” together with the complete user input
(including the coordinates of the pointer) is sent to
the application. The application and only the
application is then able to decide whether an object
should be selected or not.

In complement with the toolkit, we have
developed a graphical editor, called IMBuilder,
which supports the task of designing and declaring
interaction models. With IMBuilder, new interaction
models can be created or existing ones can be

uploaded for modification (iterative design). The
declaration of an FSM is entirely done graphically.
New states and transitions can simply be drawn in
the editor, while events and actions are typed or
selected from a list provided with the corresponding
application. Each interaction model is saved in an
XML file for subsequent use and testing with the
Multimodal Engine. The Multimodal Engine is
implemented in Java. XML is used to describe
interaction models, which are then reconstructed and
implemented in Java as described in (VanGurp,
1999).

4 Conclusion
The iterative design, implementation and testing of
multimodal user interfaces is difficult due to a lack
of supporting tools for designers and developers. In
response to this, we have developed a toolkit, based
on a simple formalism (FSMs) that aims at
facilitating this process. We discussed in this paper
how FSMs can be used to describe and test
multimodal commands, act as modality integrators,
and help reasoning about synchronization problems.

Currently, the task of designing and declaring
the interaction models remains the responsibility of
the designers. One way of speeding up the design
process and insuring that interaction models are
realistic is to automatically generate them from
experimental observations. This constitutes our
future work. Potential users will be required to freely
produce inputs with the aim of activating specific
application functions. These inputs will then form
the basis for the automatic generation of FSMs.

Acknowledgements
This research is supported by the Nuffield
Foundation under grant NUF-NAL 00.

References

Bourguet, M.L. (2002), A Toolkit for Creating and Testing
Multimodal Interface Designs, Poster in companion
proceedings of UIST 02 (Paris, October 2002), 29-
30.

Bourguet, M.L. and Ando, A. (1997), Speech timing
prediction in multimodal human-computer
interaction, in proceedings of INTERACT’97
(Sydney, July 1997), Chapman & Hall, 453-460.

Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J.
and Young, R. (1995), Four easy pieces for
assessing the usability of multimodal interaction: the
CARE properties, in Proceedings of INTERACT’95
(Lillehammer, June 1995)

Hudson, S. and Newell, G. (1992), Probabilistic State
Machines: Dialog Management for Inputs with
Uncertainty, in Proceedings of UIST’92 (November
1992), 199-208.

Nigay, L et al (1995), A Generic Platform for Addressing
the Multimodal Challenge, in Proceedings of CHI
95 (Denver, May 1995), ACM Press, 98-105.

Oviatt, S. et al. (1997), Integration and synchronization of
input modes during multimodal human-computer
interaction, in Proceedings of CHI '97 (Atlanta,
March 1997), ACM Press, 415-422.

Oviatt, S. et al (2000), Designing the User Interface for
Multimodal Speech and Gesture Applications:
State-of-the-Art Systems and Future Research
Directions, in Human Computer Interaction,
Volume 15, No 4, 263-322.

Van Gurp, J. and Bosch, J. (1999), On the implementation
of finite state machines. In Proceedings of the
IASTED International Conference (Scottsdale,
Arizona, October 6-8, 1999).

Wasserman, A. (1985), Extending State Transition
Diagrams for the Specification of Human-Computer
Interaction, IEEE Transactions on Software
Engineering, Volume 11, No 8, (August 1985),
699-713

