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Abstract:  Designing and implementing multimodal applications that take advantage of several recognition-
based interaction techniques (e.g. speech and gesture recognition) is a difficult task. The goal of our research is to 
explore how simple modelling techniques and tools can be used to support the designers and developers of 
multimodal systems. In this paper, we discuss the use of finite state machines (FSMs) for the design and 
prototyping of multimodal commands. In particular, we show that FSMs can help designers in reasoning about 
synchronization patterns problems. Finally, we describe an implementation of our FSM-based approach, in a 
toolkit whose aim is to facilitate the iterative process of designing, prototyping and testing multimodality. 
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1 Introduction  
Multimodal interaction refers to interaction with the 
virtual and physical environment through natural 
modes of communication such as speech, body 
gestures, handwriting, graphics or gaze. Recent 
developments in recognition-based interaction 
technologies (e.g. speech and gesture recognition) 
have opened a myriad of new possibilities for the 
design and implementation of multimodal systems. 
However, our lack of understanding of how these 
new modes of interaction can be best combined in 
the user interface often leads to interface designs 
with poor usability.  

In order to help designers, some attempts have 
been made to elicit relationships between different 
interaction techniques. The CARE properties for 
example (Coutaz, 1995) are a framework for 
reasoning about multimodal interaction from both the 
user and the system perspectives. But, however 
useful this framework may be, it does not offer rapid 
and practical solutions to designers. Moreover, 
multimodal systems must be equipped with adequate 
software architectures to combine the different 
modalities. Unfortunately, current models of 
architecture, such as (Nigay, 1995) and (Oviatt, 
2000) are too generic and complex to serve as 
prototyping tools. Designing and implementing 
multimodal systems is still a difficult task. In 
response to this situation, the goal of our research is 

to explore how simple modelling techniques and 
tools can be used to support the designers and 
developers of multimodal user interfaces.  

As a starting point, we have implemented a 
toolkit whose aim is to facilitate the design and 
prototyping of simple multimodal commands. 
According to our definition, a multimodal command 
is a combination of several user inputs, used to 
activate a particular function of an application (e.g. a 
function for moving graphical objects on a computer 
display). The user inputs that enter in the expression 
of a multimodal command may belong to different 
modalities (e.g. speech and gesture). In this paper, 
we show that Finite State Machines (FSMs) 
constitute a good framework for describing 
multimodal commands and for combining sets of 
user inputs of different modalities. In particular, we 
show that FSMs can help designers in reasoning 
about synchronisation patterns problems. 

2 Modelling Multimodal 
Commands Using Finite State 
Machines 

Finite State Machines are a well-known technique 
for describing and controlling dialogs in graphical 
user interfaces (Wasserman, 1985). A FSM typically 
consists of states, events, transitions and actions (see 
Figure 1). A transition has a source and a target state 
and is executed when the FSM is in the source state 
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and the event associated with the transition occurs. 
Upon the execution of a transition, an action 
associated with it can be triggered. Typically, a 
machine is initially in a “start” state, as user inputs 
arrive, they are compared against the transitions 
leaving the current state. If the event matches the 
transition, the FSM moves to the state at the other 
end of the transition (target state); if no matching 
transition is found, the FSM usually moves to a 
special error state. 

 
Figure 1: Finite State Machine (FSM) 

 
According to (Hudson, 1992), controlling a 

complete dialog with FSMs can present some 
significant drawbacks (such as promoting the use of 
modes), but FSMs are very appropriate for 
controlling dialogs at the command level. We show 
here that FSMs are also useful for modelling 
multimodal commands.  

Figure 2 illustrates how different multimodal 
commands can be modelled by simple FSMs. The 
first FSM (Figure 2) represents a multimodal 
command for “moving an object” that is specified by 
the following sequence of inputs: mouse-press on an 
object, a mouse-move (eventually followed by 
several optional mouse-move) and a mouse-release.  
Alternatively, the second FSM represents another 
multimodal command to activate the same function, 
but characterized by a different sequence of inputs: 
mouse-press then mouse-release on an object, speech 
input “move”, and finally mouse-press then mouse-
release on a target position. 

 

 
Figure 2: Two different multimodal commands to  

describe the function “ moving an object” . 
 
When designing multimodal commands, 

one important task is the specification of the 
synchronization requirements. The aim is to 
guarantee that users will be able to activate the 
commands in a natural and spontaneous manner. In 
human-human interaction, the temporal synchrony of 
speech and hand gestures has been analysed for 
different languages. In human-computer interaction 

however, little experimental evidence is currently 
available for reasoning about synchronization 
requirements (Oviatt, 1997), (Bourguet, 1997). In 
practice, a user can produce inputs in a sequential 
(e.g. with pen input completed before speech begins) 
or simultaneous manner (when both inputs show 
some temporal overlap). 
 FSMs constitute a good framework for 
testing different synchronization patterns. For 
example, Figure 3 describes a speech and pen 
“ move”  command where many different 
synchronisation patterns are represented. The top 
branch of the FSM (Figure 3) starts with a “ speech 
move”  event, allowing users to initiate the command 
using speech. In contrast, the bottom branch starts 
with a “ mouse-press”  event, allowing users to use the 
pen first. This initial “ mouse-press”  event can then 
be followed by either a “ mouse-move”  input or a 
“ speech move”  input. According to this 
representation, users are thus given the possibility to 
organize their sequence of inputs in several ways and 
following different synchronization patterns. In other 
words, with such a representation of a command, 
users are free to deliver inputs in their preferred 
order (sequentially or simultaneously, pen first or 
speech first). 

 
Figure 3: FSM modelling a “ move”  speech  

and pen command where many  
synchronisation patterns are represented.  

The interaction is unconstrained. 
 

Figure 4 shows another FSM where only 
one synchronisation pattern is now allowed. 
According to this FSM, users must use the pen first 
and pronounce the “ speech move”  event before the 
sequence of pen inputs is finished. Such an FSM has 
for effect to constrain users in their usage of the 
modalities. 

 
Figure 4: FSM modelling a “ move”  speech  

and pen command where only one  
synchronisation pattern is allowed.  

The interaction is constrained. 



   

 
We have used FSMs to test the designs of 

several graphical applications. For example, for the 
purpose of studying spontaneous synchronization 
patterns for different interaction styles, we have 
implemented an application in which the users were 
asked to place famous London landmarks on a map. 
Four different interaction styles were implemented: 
(1) “ speech-gesture”  commands (e.g. to make a 
picture appear on the map, the user draws a “ P”  and 
pronounces the name of the landmark); (2) “ speech-
point”  commands (e.g. to resize a picture, the user 
points at a picture and says “ smaller” ); (3) “ speech-
point-point”  commands (e.g. to move an image, the 
user says “ move it here” , points at an image and 
points at the destination) and (4) “ speech-drag”  
commands (e.g. to move an image, the user says 
“ move”  and drags the image to its desired location). 
Different synchronization patterns were 
incrementally tested to determine the best possible 
synchronization requirements, according to each 
interaction style. 

3 Toolkit 
We have integrated our FSM-based framework in a 
toolkit that aims at facilitating the iterative process of 
designing, implementing and testing multimodal 
commands (Bourguet, 2002). Low-level APIs with 
the recognition engines and user inputs management 
are both handled in the toolkit in a transparent 
manner. Iterative design and declaration of FSMs is 
done via a simple graphical editor.  

Figure 5 shows the global architecture of 
the system. The toolkit comprises two main modules: 
the  “ Interaction Model”  and the “ Multimodal 
Engine”  to which is connected the core of the 
application (where the functions of the application 
are implemented). 

 
Figure 5: Toolkit global architecture. 

 
The Interaction Model contains all the FSMs to 

be tested. Multimodal commands can be tested one 
by one (i.e. the interaction model contains only one 
FSM), or several of them can be tested 
simultaneously. There is no constraint on the number 
of FSMs that an interaction model contains. 

The Multimodal Engine is responsible for 
controlling the different input channels and 
recognition systems (e.g. speech and gesture 
recognition systems) and for managing user inputs. 
Managing user inputs includes (1) formatting them 
so they can be matched with transition events in the 
interaction model, (2) handling and dispatching 
recognition hypotheses as they are delivered by the 
recognition engines. As input management is the 
entire responsibility of the Multimodal Engine, the 
application (e.g. a graphical application) is not 
allowed to handle itself any user input. In 
consequence, it is required to send all graphical 
events (e.g. mouse press and menu selection) to the 
Multimodal Engine. 

The Multimodal Engine dispatches user inputs 
to all the FSMs of the interaction model. In order to 
match a user input with the event of a transition, the 
individual elements that compose the event of the 
transition are parsed against the constituents of the 
user input. Typically, an input starts with the 
modality type (e.g. speech, mouse, pen, gesture, 
etc.). A speech input may then contain a tag (e.g. 
colour), followed by the word or sequence of words 
that was pronounced (e.g. “ green” ). Similarly, a 
gesture input may contain a gesture class (e.g. 
command) and a gesture name (e.g. delete). A mouse 
input contains an action type (press, release or 
move), followed by the x and y coordinates of the 
pointer. When an FSM enters a state with which an 
action is associated, it communicates to the 
application the complete set of user inputs that 
allowed it to move from its start state to its current 
state. The application is then in charge of evaluating 
the action and of deciding whether it should be 
executed or not. For example, when the user presses 
a mouse button (transition event), an action “ select 
object”  together with the complete user input 
(including the coordinates of the pointer) is sent to 
the application. The application and only the 
application is then able to decide whether an object 
should be selected or not. 

In complement with the toolkit, we have 
developed a graphical editor, called IMBuilder, 
which supports the task of designing and declaring 
interaction models. With IMBuilder, new interaction 
models can be created or existing ones can be 



   

uploaded for modification (iterative design). The 
declaration of an FSM is entirely done graphically. 
New states and transitions can simply be drawn in 
the editor, while events and actions are typed or 
selected from a list provided with the corresponding 
application. Each interaction model is saved in an 
XML file for subsequent use and testing with the 
Multimodal Engine. The Multimodal Engine is 
implemented in Java. XML is used to describe 
interaction models, which are then reconstructed and 
implemented in Java as described in (VanGurp, 
1999). 

4 Conclusion  
The iterative design, implementation and testing of 
multimodal user interfaces is difficult due to a lack 
of supporting tools for designers and developers. In 
response to this, we have developed a toolkit, based 
on a simple formalism (FSMs) that aims at 
facilitating this process. We discussed in this paper 
how FSMs can be used to describe and test 
multimodal commands, act as modality integrators, 
and help reasoning about synchronization problems. 

Currently, the task of designing and declaring 
the interaction models remains the responsibility of 
the designers. One way of speeding up the design 
process and insuring that interaction models are 
realistic is to automatically generate them from 
experimental observations. This constitutes our 
future work. Potential users will be required to freely 
produce inputs with the aim of activating specific 
application functions. These inputs will then form 
the basis for the automatic generation of FSMs. 
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