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Abstract

In this paper, we propose a new recursive framework for camera resectioning and apply it to off-line video-based augmented reality.
Our method is based on an unscented particle filter and an independent Metropolis–Hastings chain, which deal with nonlinear dynamic
systems without local linearization, and lead to more accurate results than other nonlinear filters. The proposed method has some desir-
able properties for camera resectioning: Since it does not rely on erroneous linear solutions, initialization problems do not occur, in con-
trast to the previous resectioning methods. Jittering error can be reduced by considering consistency and coherency between adjacent
frames in our recursive framework. Our method is fairly accurate comparable to nonlinear optimization methods, which in general have
higher levels of computation and complexity. As a result, the proposed algorithm outperforms the standard camera resectioning algo-
rithm. We verify the effectiveness of our method through several experiments using synthetic and real image sequences comparing the
estimation performance with other linear and nonlinear methods.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The fundamental process of augmented reality system is
to merge virtual objects with images of a real environment
for giving more information or making an augmented envi-
ronment. The transformation between world space and
image plane is represented by a camera matrix, and the
augmented reality system utilizes the camera matrix for
merging virtual objects with images. Camera tracking,
which sequentially estimates the camera matrix of a view-
ing system, is an essential step of the augmented reality sys-
tem. Since the accuracy of the camera tracking algorithm
significantly affects the perceived accuracy of augmented
environment, developing an optimal camera tracking algo-
0167-8655/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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rithm is one of the most important issues in the augmented
reality community.

In an on-line augmented reality system, camera tracking
should be conducted as rapidly as possible. To reduce the
computational complexity of the camera tracking algo-
rithm in the on-line system, intrinsic parameters of the
camera, i.e., focal length, aspect ratio, and skew, are esti-
mated a priori by using any calibration process, and the
estimate of the camera motion is sequentially updated by
using any high-speed camera tracking algorithm (Davison,
2003; Pupilli and Calway, 2005). Camera tracking algo-
rithms often make specific assumptions on the nature of
camera motion or scene structure, e.g., Simon et al.
(2000), and the flexibility of the on-line augmented reality
system is limited by these assumptions. Contrary to on-line
systems, in off-line systems, the accuracy of augmented
environment is more important than the high-speed pro-
cessing, and any assumption on the nature of camera
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Fig. 1. An abstract framework for the off-line video-based augmented
reality system. In this paper, we focus on the camera tracking module, and
the frame-sampling based image sequence analysis and camera resection-
ing are accounted for the exact camera tracking.
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Fig. 2. Frame-sampling based auto-calibration, structure and motion
analysis system in uncalibrated image sequences. It can be divided by two
part; Euclidean scene structure estimation from key-frames and motion
estimation by camera resectioning.
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motion and scene structure is not utilized for the flexibility
of the system.

An overview of the off-line video-based augmented real-
ity system is illustrated in Fig. 1. Video-based off-line aug-
mented reality is commonly used as a post-process for
television or film special effects. In the off-line system, there
is no need for the camera motion to be updated in real-time,
and auto-calibration techniques (Pollefeys et al., 1999, 2002;
Hartley and Zisserman, 2000, chapter 18) are used for cam-
era calibration and metric upgrade with an unknown pro-
jective basis. Bundle adjustment (Triggs et al., 2000), a
nonlinear method simultaneously optimizing camera
motion and scene structure, is commonly used in the camera
tracking module to distribute errors as evenly over video
sequence as possible in order to acquire the high perceptual
accuracy of an augmented environment. Although the bun-
dle adjustment itself is well-developed, it has an essential
problem; requiring an initial solution with small residual.
Several approaches have been proposed for this problem,
such as Frame-sampling based approaches (Fitzgibbon and
Zisserman, 1998; Georgescu and Meer, 2002; Seo et al.,
2003), adopted in this work, originated from considering
this problem. In our system, illustrated in Fig. 2, video
frames are classified into key-frames and intra-frames, and
camera intrinsic parameters and scene structure are com-
puted from the correspondence information between key-
frames by using several computing steps. Camera motion
over the entire video frames is computed based on camera
intrinsic parameters and scene structure, estimated in the
previous step. During this process, we attempt to acquire
the camera motion that is consistent with the recovered
camera geometry and scene structure. The main focus of
this paper is on this process, which has never been directly
considered in previous works.

Computing camera matrix from known or reconstructed
scene structure and correspondences is called camera cali-

bration or camera resectioning in the vision community
(Faugeras, 1993; Hartley, 1995; Hartley and Zisserman,
2000; Forsyth and Ponce, 2002). Camera resectioning is
frequently utilized in frame-sampling based structure and
motion analysis (Fitzgibbon and Zisserman, 1998; Nister,
2001; Georgescu and Meer, 2002), and off-line video-based
augmented reality (Gibson et al., 2002; Seo et al., 2003;
Kim and Hong, 2004). Frame-sampling based approaches
in general are composed of two parts; camera calibration
and scene structure reconstruction from selected key-
frames, and camera motion estimation over intra-frames
or all frames based on the reconstructed scene structure,
i.e., camera resectioning. In the projective space, a camera
matrix can be linearly estimated up to an unknown projec-
tive transform, but in the Euclidean space the estimation of
intrinsic parameters, i.e., focal length, skew, aspect ratio
and optical center, and extrinsic parameters, representing
the rotational and translational motion of camera, should
be carefully considered. Linear methods, based on singular

value decomposition (Golub and Van Loan, 1983), give rea-
sonable solutions for projective camera resectioning if the
data are correctly pre-processed (Hartley, 1995). Several
linear methods have been proposed for Euclidean camera
resectioning (Faugeras, 1993; Forsyth and Ponce, 2002).
These methods attempt to calibrate cameras frame by
frame without considering consistency and coherency
between adjacent frames, and the camera parameters do
not frequently have consistent values over all frames. This
is one reason behind the creation of jittering errors in aug-
mented reality. Without loss of generality, most off-line
video-based augmented reality systems assume that the
viewing geometry of camera is not changed. Technically,
only a focal length change of the video camera is rendered
by generic graphic machine, and other intrinsic parameters
are required to be constant over all frames. A general
remedy for this problem in previous methods was to fix
the intrinsic parameters with known values and then
re-estimate the unfixed intrinsic and extrinsic parameters
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for the consistency of estimation results. For this purpose,
a nonlinear error cost function, e.g., the weighted sum of
squared error cost function (Triggs et al., 2000, p.10), is
minimized by using iterative nonlinear optimization tech-
niques (Pollefeys et al., 1999; Forsyth and Ponce, 2002).
However, the optimization-based approach, called the non-
linear method in this work, has a drawback in that it only
works when initial solutions are close to true ones as
described in the previous paragraph. Besides, the nonlinear
method is computationally expensive in general. Our
research is motivated by this observation. We would like
to develop a recursive framework to calculate camera
parameters with coherency and consistency between every
adjacent frames.

Contrary to other strategies, we consider a recursive
framework which efficiently uses the latest information
for prediction and update (Azerbayejani and Pentland,
1995; Chiuso et al., 2002). Our camera resectioning algo-
rithm is based on the unscented particle filter (Julier and
Uhlman, 1997; Wan and Merwe, 2000; Merwe et al.,
2000; Merwe and Wan, 2003), which was presented as an
alternative to the particle filter (Liu and Chen, 1998; Isard
and Blake, 1998; Doucet et al., 2001) and the extended Kal-
man filter (Anderson and Moore, 1979), with the aim of
achieving a better level of accuracy at a comparable level
of complexity. The stability and accuracy of unscented par-
ticle filter have been proved by many researchers.

Our problem for camera resectioning is formulated with
a dynamic state space model, where the camera intrinsic
parameters are included into system parameters, and the
extrinsic parameters are regarded as unknown system
states. The unscented particle filter is applied to recursively
estimate the states of system through two steps, predicting
and updating the mean and the covariance of system states.
The proposal distribution of our unscented particle filter is
modelled with a mixture of Gaussian. To efficiently gener-
ate samples from the proposal distribution, we combine the
unscented Kalman filter (Wan and Merwe, 2000) and the
independent Metropolis–Hastings chain (Gilks et al., 1995)
into our sampling procedure. In our framework, initializa-
tion problems do not occur, and the camera intrinsic
parameters are not changed by the resectioning process.
The consistency and coherency in the camera parameters
are successfully accounted by using a probabilistic infer-
ence in our framework. In the statistical viewpoint, our
method is a maximum a posterior estimator while the
previous linear and nonlinear methods are maximum like-
lihood estimators. Several experiments are conducted with
synthetic and real image sequences to demonstrate the
effectiveness of our approach. The estimation performance
of our approach is compared with several related
approaches. It is illustrated that our method outperforms
previous linear methods and other recursive methods,
and the accuracy of our method is comparable with the
accuracy of iterative nonlinear optimization methods.

The organization of this paper is as follows. Section 2
introduces our image sequence analysis system. Section 3
presents our dynamic state space model for the camera
motion estimation problem. Section 4 describes our recur-
sive framework for camera resectioning by using the
unscented particle filter. Experimental results are given in
Section 5 and our conclusions are drawn in Section 6.

2. Uncalibrated image sequence analysis

Our system for auto-calibration, structure and motion
analysis in uncalibrated image sequences is presented in
Fig. 2. Similar systems have been studied by Nister
(2001) and Georgescu and Meer (2002). Our system can
be divided into two parts: Euclidean scene structure estima-
tion from key-frames and motion estimation by camera
resectioning. In our system, selecting and tracking image
features from image sequences are conducted by the
Kanade–Lucas–Tomasi algorithm (Shi and Tomasi, 1994).
We can automatically select key-frames by using frame dec-

imation algorithm (Nister, 2001) or key-frame selection

algorithms (Gibson et al., 2002; Seo et al., 2003). These
automatic algorithms often create a redundancy in the
key-frame selection according to the parameter setting,
and the computation complexity of the reconstruction
algorithm is increased by the redundancy in the frame
selection process. In our experiments, we have selected a
minimal number of key-frames in order to reduce the com-
putation complexity of the scene structure estimation.
From the firstly selected three key-frames, we estimate
the initial scene structure and three projective cameras by
using trifocal tensor technique (Hartley and Zisserman,
2000). Within the projective space, we sequentially merge
the next key-frame to the first three key-frames by sequen-
tially reconstructing the projective structure of the new
key-frame based on the previously reconstructed scene
structure. After completing the projective reconstruction
from all key-frames in image sequences, we distribute the
estimation error evenly over key-frames by using the pro-
jective bundle adjustment, and then we upgrade the projec-
tive reconstruction to the Euclidean reconstruction by
using the linear auto-calibration based on the absolute dual
quadric and the nonlinear auto-calibration refinement of
uncertainty (Pollefeys et al., 2002). Then, we apply the
Euclidean bundle adjustment to the upgraded Euclidean
scene structure and camera parameters of key-frames in
order to minimize the error in the metric-upgrade process.

From the correspondences and the scene structure com-
puted in the structure estimation part, computing the
motion of moving camera over all video frames is done
by camera resectioning. The estimated camera parameters
are used in the off-line augmented reality system developed
in our laboratory. Linear methods for the camera intrinsic
and extrinsic parameter estimation have been introduced in
many vision materials (Faugeras, 1993; Hartley and Zisser-
man, 2000; Forsyth and Ponce, 2002). However, linear
solutions are not adequate for the augmented reality sys-
tem where estimated cameras should satisfy some require-
ments, i.e., zero skew, unit aspect ratio, and fixed optical
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center. In the previous works this problem has never been
directly considered. Our camera resectioning algorithm
tries to solve this problem by using a dynamic state space
model and a recursive filter. This approach has never been
used for camera resectioning in the previous works.

3. Problem formulation

We adopt a dynamic state-space model with parameters
to represent the dynamic motion of a camera acquiring
video data. The global rotation X 2 SO(3) and the global
translation T of the video camera are defined as the
dynamic states in the camera resectioning problem, and
written as

x ¼ fX; Tg: ð1Þ
Associated to each global motion X and T, there are time-
varying parameters, i.e., angular velocity x, linear velocity
v, angular acceleration _x and linear acceleration _v, and sta-
tic parameters, i.e., covariance matrix of angular accelera-
tion R _x, covariance matrix of linear acceleration R _v,
camera focal length f and N points of 3-D scene structure
S(1), . . . ,S(N), reconstructed in the previous structure esti-
mation module. We denote h for the notation of all the
above system parameters, and define it as

h ¼ ff ;x; _x; v; _v;R _x;R _v; S
ð1Þ; . . . ; SðNÞg: ð2Þ

In our framework, the time evolution model for the states
and parameters of the video camera is given by

ftþ1 ¼ ft ð3Þ
SðiÞtþ1 ¼ SðiÞt i ¼ 1; . . . ;N ð4Þ
Xtþ1 ¼ logSOð3Þðex̂t eXtÞ ð5Þ
T tþ1 ¼ ex̂t T t þ vt ð6Þ
xtþ1 ¼ xt þ _xt _xt � Nð0;R _xÞ ð7Þ
vtþ1 ¼ vt þ _vt _v � Nð0;R _vÞ; ð8Þ

where x̂ is the skew symmetric matrix of angular velocity x
and logSO(3) the inverse of Rodrigues’ formula (Chiuso
et al., 2002). At time t, the measurement equation for the
camera state x and the camera parameter h is given by

yt ¼ ðxð1Þt ; yð1Þt ; . . . ; xðNÞt ; yðNÞt Þ ¼ hðxt; htÞ þ nt; ð9Þ

where the measurement noise nt � Nð0;RntÞ and h(Æ) is the
2N-dimensional vector of corresponding nonlinear equa-
tion of the perspective camera projection, defined by

ðxðiÞt ; y
ðiÞ
t Þ

T ¼ f
½ZðiÞt �1

½ZðiÞt �3
; f
½ZðiÞt �2

½ZðiÞt �3

 !T

; ð10Þ

where ZðiÞt ¼ eXt SðiÞt þ T t and [Æ]j denotes jth element. In our
problem formulation, camera intrinsic parameters such as
focal length, skew, aspect ratio and principal points are
fixed with known values. Contrary to the previous ap-
proaches, this assumption makes no significant error in
our recursive camera resectioning algorithm.
4. Recursive camera resectioning

A recursive framework is used in our resectioning algo-
rithm in order to efficiently use the latest information for
consistency and coherency in the camera motion. Our algo-
rithm is based on the unscented particle filter, which was
presented as an alternative to the extended Kalman filter
and achieves a better level of accuracy at a comparable
level of complexity. The unscented particle filter is applied
to recursively estimate the global motion of the video cam-
era through two steps, predicting and updating the mean
and the covariance of system state. Consistency and coher-
ency in the camera motion is successfully accounted for by
using the probabilistic inference capability of the unscented
particle filter.
4.1. Propagating mean and covariance

Unscented transform (Julier and Uhlman, 1997) is a
method for propagating mean and covariance with second
order accuracy in a nonlinear system. This transform was
applied to the extended Kalman filter and called as the
unscented Kalman filter (UKF) by Wan and Merwe
(2000). Fig. 3 is included to visually illustrate the idea of
the unscented transform and to support the understanding
of the UKF-based part of our algorithm. In this algorithm,
the mean and the covariance of the n-dimensional state are
represented with 2n + 1 weighted samples, called sigma

points.
The mean and the covariance of the camera system state

x in Eq. (1), predicted by using the UKF algorithm, are
denoted �xUKF and RUKF, respectively, in our framework.
At time t our UKF-based prediction steps can be described
in the following way:

Step 1: Calculate 2n + 1 sigma points fX ð0Þt�1; . . . ;X ð2nÞ
t�1 g

of the camera system state by using xt�1 and Rt�1, the
mean and the covariance of the camera system state at time
t � 1, respectively:
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X ðiÞt�1 ¼

�xUKF
t�1 i ¼ 0

�xUKF
t�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ kÞRUKF

t�1

q� �ðiÞ
1 6 i 6 n

�xUKF
t�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ kÞRUKF

t�1

q� �ðiÞ
nþ 1 6 i 6 2n

8>>>>>><
>>>>>>:

ð11Þ

and corresponding weights are computed by

W ðiÞ ¼
k=ðnþ kÞ i ¼ 0

1=2ðnþ kÞ o:w:;

�
ð12Þ

where
ffiffiffi
A
p� �ðiÞ

is ith singular vector of the matrix A, k = 2 is
used as a scaling factor for weights, and n is the dimension
of the state vector.

Step 2: Predict the mean and the covariance of the cam-
era system state from 2n + 1 sigma points fX ð0Þt�1; . . . ;X ð2nÞ

t�1 g
using the time evolution model in Eqs. (3)–(8) (we denote a
symbol g to represent that evolution model), and the mea-
surement equation in Eq. (9):

X ðiÞtjt�1 ¼ gðX ðiÞt�1; htÞ i ¼ 0; . . . ; 2n ð13Þ

�xtjt�1 ¼
X2n

i¼0

W ðiÞX ðiÞtjt�1 ð14Þ

Rxx
tjt�1 ¼

X2n

i¼0

W ðiÞðX ðiÞtjt�1 � �xtjt�1ÞðX ðiÞtjt�1 � �xtjt�1ÞT ð15Þ

Y ðiÞtjt�1 ¼ hðX ðiÞtjt�1; htÞ þ nt ð16Þ

�ytjt�1 ¼
X2n

i¼0

W ðiÞY ðiÞtjt�1: ð17Þ

Step 3: Update the predicted mean and the predicted
covariance by innovation information:

Ryy
tjt�1 ¼

X2n

i¼0

W ðiÞðY ðiÞtjt�1 � �ytjt�1ÞðY ðiÞtjt�1 � �ytjt�1ÞT ð18Þ

Rxy
tjt�1 ¼

X2n

i¼0

W ðiÞðY ðiÞtjt�1 � �ytjt�1ÞðX ðiÞtjt�1 � �xtjt�1ÞT ð19Þ

Kt ¼ Rxy
tjt�1 Ryy

tjt�1

� 	�1

ð20Þ

�xUKF
t ¼ �xtjt�1 þ Ktðyt � �ytjt�1Þ ð21Þ

RUKF
t ¼ Rxx

tjt�1 � KtR
yy
tjt�1KT

t : ð22Þ

The propagated mean and covariance �xUKF
t and RUKF

t are
used to represent the modes of the proposed distribution,
which is called UKF proposal distribution (Merwe et al.,
2000), generating particles for the probabilistic inference
of the system state. The procedure for the probabilistic
inference is described in the following section.

4.2. Sequential probabilistic inference

In Fig. 4, we show the block diagram of the unscented
particle filter for the recursive filtering of the global camera
motion state. The unscented particle filter in Fig. 4 is
achieved by combining sequential importance sampling

(Liu and Chen, 1998) and the unscented Kalman filter in
order to improve the performance of the basic particle filter
and overcome the drawbacks of other nonlinear filtering
methods.

For dynamic systems, the importance proposal can be
modelled with a mixture of Gaussian distributions and
are obtained by a bank of unscented Kalman filters, which
was discussed in the paper of Merwe and Wan (2003).
Because a moving video camera is a dynamic system, we
adopt the Gaussian mixture proposal distribution to
represent the multi-modal probability distribution. This
approach has another advantage to allow the reduction
of the number of samples. Our importance proposal distri-
bution, a mixture of M Gaussian distributions, is given
by

gtðxtjx0:t�1Þ ¼
XM

j¼1

wðjÞt�1N xtj�xðjÞ;UKF
t ;RðjÞ;UKF

t

� �
; ð23Þ

where the mixing weight of jth mode, wðjÞt�1, is sequentially
updated through the updating rule of the unscented parti-
cle filter. We introduce an auxiliary random variable J,
which takes values from the set {1, . . . ,M}. Drawing a sam-
ple (J,Xt) according to the proposal in Eq. (23) can be real-
ized with the rejection algorithm (Liu and Chen, 1998).
However, it is a well-acknowledged fact that the rejection
algorithm is restrictive and inefficient, because the sampling
procedure should be iterated until the generated sample is
accepted. To improve the efficiency and the convergence
of the sampling procedure, we adopt the independent

Metropolis–Hastings chain (IMHC) (Gilks et al., 1995).
We define k as the index of IMHC iteration. At kth itera-
tion, our UKF & IMHC sampling procedure has the follow-
ing seven steps:

Step 1: Select Jk = j with probability proportional to the
weighting factor wðjÞt�1, which is represented with the
cumulative distribution function C(J), given by

CðJÞ ¼
XJ

j¼1

wðjÞt�1: ð24Þ

Step 2: Propagate the mean �x
ðjÞ;UKF
t�1 and the covariance

RðjÞ;UKF
t�1 with UKF, described in Section 4.1.
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Step 3: Generate Xt = xt,k from the proposal distribution
written by

gðjÞt ðxtjx0:t�1Þ ¼ N xtj�xðjÞ;UKF
t ;RðjÞ;UKF

t

� �
: ð25Þ

Step 4: Generate a uniform (0,1) random variable U.
Step 5: Compute the acceptance probability with

paðxt;k; xt;k�1Þ ¼ min 1;
f ðytjxt;k; htÞwðJk�1Þ

t�1

f ðytjxt;k�1; htÞwðJkÞ
t�1

" #
; ð26Þ

where f(ytjxt,ht) is a likelihood function, given by

f ðytjxt; htÞ ¼ expf�ðyt � ~ytÞTR�1
nt
ðyt � ~ytÞg: ð27Þ

Step 6: Accept xt,k, if U P pa(xt, k,xt,k�1). Otherwise, set
xt,k equal to xt,k�1.
Step 7: Stop the iteration if k P kth. Otherwise, increase
k and go to Step 1.

This sampling procedure has many preferable proper-
ties. It achieves re-sampling effect automatically and also
avoids weight estimation. Re-sampling is necessary to
evolve the system state for time t to t + 1 and to prevent
the proposal distribution from becoming skewed. The flow
chart of our sampling procedure is illustrated in Fig. 5. The
number of IMHC iterations is limited by kth for practical
realization. This procedure is repeatedly applied to acquire
M samples, x

ð1Þ
t ; . . . ; x

ðMÞ
t , corresponding to the modes of
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Fig. 5. Our sampling procedure based on unscented Kalman filter and
independent Metropolis–Hastings chain algorithm.
the probability distribution of camera system state at time
t. The estimation of camera motion can be simply com-
puted with the weighted average of M samples. Our recur-
sive camera resectioning algorithm can be summarized in
the following way:

Algorithm 1. Recursive Camera Resectioning Algorithm

(1) Iterate for i = 1, . . . ,M

(1.1) Draw ðJ ;X tÞ ¼ ðj; xðiÞt Þ with UKF & IMHC sampling
procedure.

(1.2) Compute the incremental weight as
uðiÞt ¼ f ðytjxðiÞt ; htÞgtðxðiÞt jx
ðjÞ
0:t�1Þ: ð28Þ
(1.3) Let wðiÞt ¼ uðiÞt wðjÞt�1.
(2) Normalize so that

P
jw
ðiÞ
t ¼ 1.

(3) Estimate camera motion as
E½X tjY t� �
XM

i¼1

wðiÞt xðiÞt : ð29Þ
The accuracy of our method depends on the number of
samples, M, in the importance proposal distribution, mod-
elled with a mixture of Gaussian distributions and obtained
by a bank of UKF. As M is increased, the estimation per-
formance of our algorithm can be significantly improved.
Although we have a computational burden in the bank
of UKF, where the 6 · 6 covariance matrix of each mode
should be decomposed to acquire sigma points, our meth-
od dramatically reduces the number of particles and ac-
quire a higher level of accuracy in the estimation results.
Our method corresponds to a maximum a posterior estima-
tor, statistically superior to maximum likelihood estimators
adopted in linear and nonlinear resectioning methods.
Consequently, initialization problems do not occur in our
recursive framework, and the camera intrinsic parameters,
representing the camera geometry, are not changed, which
is important for stabilizing the perceptual accuracy of the
video-based augmented reality.
5. Experimental results

Numerical experiments were conducted with synthetic
and real image sequences to demonstrate the effectiveness
of our recursive camera resectioning algorithm. All compu-
tations were carried out on a desktop PC with a 2.4-GHz
Intel P4 CPU. In order to show the effectiveness of our
method, we compared it with several different nonlinear
filters available for recursive camera resectioning: the
particle filter (PF), the particle filter with independent
Metropolis–Hastings chain (PF-IMHC), the extended
Kalman filter (EKF), and the unscented Kalman filter
(UKF), as well as with the linear and nonlinear methods
for camera resectioning. For comparison, the system model
in Section 3 was used in other nonlinear filters as in our
method. Without much loss of generality, we assumed
that R _x ¼ r2

_xI , R _v ¼ r2
_vI and Rn ¼ r2

nI . In all experiments,
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the initial state vector was set with x0 = 0, and the initial
system covariance with R0 ¼ diagðR _x;R _vÞ. The IMHC
iteration number, kth, was set to five in both PF-IMHC
and our method, this is, the IMHC procedure iterates five
times to generate a single sample from a proposal distribu-
tion. In some experiments, we tested a single Gaussian
distribution, i.e., M = 1, for the proposal distribution of
our method, instead of the mixture of M Gaussian distribu-
tions. When M = 1, the iterative IMHC sampling was
bypassed to remove unnecessary computations. In this
case, our method is equal to UKF.

The different methods were implemented as follows. The
linear and nonlinear methods for camera resectioning were
implemented by following the process for geometric cam-
era calibration (Faugeras, 1993, chapter 3; Forsyth and
Ponce, 2002, chapter 3). In the linear method, we first esti-
mated the projective camera matrix using the linear least-
squares method, and then estimated the intrinsic and
extrinsic parameters from the projective camera matrix
using the formulas proposed by Faugeras (1993). In the
nonlinear method, we optimized the entries of the projec-
tive camera matrix before estimating the camera para-
meters. Then, we estimated the intrinsic and extrinsic
parameters from the optimized projective camera matrix.
Lastly, we set the intrinsic parameters with known values
as we stated in Section 1, and then optimized the remaining
extrinsic parameters. In the numerical implementation of
the nonlinear method, we employed a weighted sum of
squared error cost function (Triggs et al., 2000, p. 10) to
formulate the cost function for camera resectioning, and
then searched a minimum of the cost function using the
Gauss–Newton and Levenberg–Marquard algorithm while
controlling the step size using the line search method to
guarantee convergence to a minimum (Triggs et al., 2000,
pp. 14–17). The generic algorithms for EKF (Welch and
Bishop, 2001) and PF (Merwe et al., 2000) were used in
our experiments.

In order to quantitatively evaluate the performance of
camera resectioning, we have computed the reprojection
error, i.e., the Root-Mean-Squares (RMS) error in the unit
of pixel, defined by

RMS error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
kyt � hðx̂t; htÞk2

r
;

where kÆk denotes the l2-norm of a vector. To examine the
estimation error of each method, we have computed the
relative l2 error of the rotation estimate, er, defined by

er ¼
kX̂1:t � X1:tk
kX1:tk

;

where X̂1:t and X1:t denote the estimate and the ground
truth of the global rotation, respectively, from times 1 to
t. In like manner, we have also computed the relative
l2 error of the translation estimate, et, from the estimate
and the ground truth of the global translation. Note that
ground truth is only available for simulation.
Through the simulation and real experimental results, it
is validated that our method outperforms other nonlinear
filters as well as the linear method, and the estimation per-
formance of our method is comparable to the nonlinear
method.

5.1. Simulation results

In the first experiment, we show that in the camera
resectioning problem, our method is more accurate and
cost-efficient than the other particle filters. Our method
was compared to PF and PF-IMHC in terms of the error
and computation time relative to the number of samples,
M. Note that our method uses the UKF & IMHC sampling
procedure described in Section 4.2, but PF and PF-IMHC
use the random sampling and the independent Metropolis–
Hastings chain, respectively. We synthesized a camera
motion sequence of 512 · 512 pixels and 100 frames simu-
lating a freely moving camera viewing a 3-D object. We set
the focal length of the camera to 1.0, corresponding to 53�
field of view and 512 in the unit of pixel, the skew to zero,
and the optical center equal to the image center, i.e.,
(256,256). The initial motion was set to zero. The 3-D
object was composed of 100 points on a sphere. The radius
of the sphere was set to 1.0, and the distance from the cam-
era to the center of the sphere was set to 4.0, where we can
figure out that the object is half the size of the image at the
first frame. Gaussian random noise was added to each
coordinate of image point. The standard deviation of noise
was set to 0.1 pixel. In all methods, the system parameters
in Eq. (2) were set with known values.

Table 1 shows the number of samples M, the average,
minimum, and maximum values of the RMS error in pix-
els, the relative l2 error, and the computation time in
seconds. To obtain the statistical value of the errors, all
simulation results were averaged over 10 test runs. The
computation time was the total computation time for esti-
mating a complete camera motion of 100 frames. Note that
we used the same system model and set the system param-
eters with known values in all methods. The results show
that the superior performance of the UKF & IMHC sam-
pling procedure of our method is clearly evident. There-
fore, we can conclude that our method can perform the
camera resectioning with higher accuracy and smaller sam-
ples at the same time than other particle filters. We could
improve the estimation accuracy of PF about 2 times using
IMHC. The increase of the computational cost to adopt
IMHC can be supplemented by reducing the number of
samples as in PF-IMHC and our method. Notice that
our method uses a bank of UKFs for proposal distribution
generation, which explains why our method shows the per-
formance superior to PF-IMHC as well as PF. It is worth
noting that our method could conduct the camera resec-
tioning using a single sample. As we stated above, our
method works exactly like UKF when the numbers of sam-
ples is set to one, i.e., M = 1. The computation time of our
method with M = 1 was 3.9 s.



Table 1
Comparison of the RMS error, relative l2 error and computation time relative to the number of samples on the simulation data

Method M RMS error (pixel) Rel. l2 error (%) Time (s)

Avg. Min. Max. er et

PF 1000 1.09 0.44 2.08 6.30 11.25 143.7
750 1.19 0.34 2.24 6.67 11.72 85.9
500 1.51 0.52 2.73 8.62 15.35 42.3
250 2.20 0.82 4.02 12.71 22.66 13.9

PF-IMHC 500 0.70 0.26 1.26 4.23 7.56 244.2
250 0.89 0.30 1.70 5.17 9.22 85.9
100 1.40 0.46 2.62 7.92 14.14 25.9
50 2.07 0.66 3.68 12.14 21.48 11.6

Our method 25 0.06 0.02 0.16 0.15 0.30 96.2
10 0.09 0.02 0.24 0.17 0.37 38.0
5 0.12 0.02 0.34 0.20 0.48 19.7
1 0.19 0.04 0.72 0.27 0.72 3.9
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In the second experiment, different camera resectioning
methods using PF, EKF, the linear method and the nonlin-
ear method, were compared to our method in terms of the
RMS error, the relative l2 error, and the computation time.
In order to analyze the estimation error with respect to the
variation of measurement noise, each algorithm was tested
using a camera motion sequence added measurement noise.
For the noise simulation, a Gaussian noise with Nð0; r2

nIÞ is
added to each image point as in the fist experiment, where
rn = 0.1, 0.5, 0.7, and 1.0. The error-free case, i.e., rn = 0,
was not considered for the even comparison (in this ideal
Table 2
Comparison of the RMS error and relative l2 error relative to measurement n

Method Noise RMS error (pixel)

rn Avg. Min.

PF 0.1 1.50 0.54
0.4 1.53 0.53
0.7 1.53 0.54
1.0 1.55 0.55

EKF 0.1 1.07 0.08
0.4 1.07 0.11
0.7 1.10 0.15
1.0 1.10 0.18

Linear method 0.1 0.59 0.09
0.4 2.41 0.36
0.7 4.20 0.61
1.0 5.93 0.94

Nonlinear method 0.1 0.02 0.01
0.4 0.09 0.03
0.7 0.16 0.06
1.0 0.23 0.08

Our method (M = 1) 0.1 0.19 0.04
0.4 0.21 0.05
0.7 0.26 0.08
1.0 0.31 0.10

Our method (M = 10) 0.1 0.09 0.02
0.4 0.13 0.04
0.7 0.18 0.06
1.0 0.25 0.09
case, the linear method does not have any error, but
numerical error). The other simulation parameters
were set as in the first experiment. The same system model
and the known system parameters were used in all
methods.

Table 2 shows the camera resectioning results of each
algorithm for four noise levels. To obtain the statistical
value of the errors, the experiment was repeated 100 times
over 100 frames for four noise levels. The computation
time of each method was also listed for the comparison
of computational complexities. The results demonstrate
oise on the simulation data

Rel. l2 error (%) Time (s)

Max. er et

2.80 8.53 15.23 42.7
2.75 8.65 15.40
2.82 8.71 15.49
2.80 8.78 15.58

3.56 1.24 2.65 2.2
3.48 1.29 2.75
3.54 1.48 2.91
3.58 1.63 3.13

1.58 0.58 1.01 0.5
6.20 2.34 4.11

11.01 4.08 7.13
15.75 5.79 10.01

0.04 0.11 0.19 61.0
0.17 0.44 0.77
0.30 0.76 1.34
0.43 1.10 1.91

0.79 0.27 0.71 3.8
0.81 0.49 1.00
0.84 0.78 1.46
0.86 1.09 1.96

0.25 0.16 0.35 38.0
0.28 0.44 0.80
0.36 0.75 1.34
0.47 1.07 1.88



Table 3
Auto-calibration and structure estimation results for the test sequences

Sequence Key-frame f (pixel) Structure Feature

Sequence 1 10 993.2 168 87
Sequence 2 11 868.7 178 57
Sequence 3 13 904.4 237 61
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the gradual degradation in the performance of our method
with increased noise. The averaged RMS error of our
method with M = 10 was 6–17 times smaller than PF,
and 4–10 times smaller than EKF. As we used more sam-
ples, i.e., more UKFs for the proposal distribution, our
method produced more accurate results. The computation
time of our method was linearly increased with the number
of samples. When we used 10 samples for our method, we
could reduce the averaged RMS errors by 20–50% and the
maximum RMS errors by 40–70%. The table demonstrates
that the linear method is very sensitive to a small amount
of measurement noise, unlike other methods. In the linear
method, the intrinsic camera parameters did not satisfy the
constraints; zero skew, unit aspect ratio, and fixed optical
center. Besides, the extrinsic camera parameters were inac-
curate even at the moderate level of noise. The RMS and
relative l2 errors of the linear method were 3–10 times lar-
ger than our method. The table shows that the nonlinear
method effectively solved the problems of the linear
method. The most accurate results were obtained using
the nonlinear method. However, the difference in the per-
formance between our method and the nonlinear method
rapidly decreased as the measurement noise increased.
Notice that only our method and the nonlinear method
among test algorithms achieved sub-pixel accuracy for all
noise levels, and the computation time of our method with
M = 1 was 3.8 s.
5.2. Real sequence results

We tested our method with three real image sequences
and compared our results with others. The first test
sequence has 90 frames of 720 · 480 pixels, the second
one 100 frames of 704 · 480 pixels, and the third one 120
frames of 704 · 480 pixels. The images of the first frame
from the test sequences 1, 2, and 3 are shown in Fig. 6.
For each test sequence, we applied the auto-calibration
and structure estimation module of our system described
in Section 2 to automatically calibrate the video camera
and estimate the scene structure. The system was set to
select the first, last, and every 10th frames as key-frame.
The feature tracking algorithm was set to track less than
100 image features at each frame.

Table 3 shows the total number of selected key-frames,
the focal length estimate in pixels, the number of recon-
structed 3-D points in the scene structure estimate, and
Fig. 6. Images of the first frame from th
the average number of tracked image features per frame.
The auto-calibration and structure estimation results were
used as an input to the camera resectioning module of
the system estimating the camera rotation and translation
over all frames of corresponding sequence. For compari-
son, we implemented the camera resectioning module with
five different methods; PF, EKF, the linear method, the
nonlinear method, and our method. We used 500 samples
in PF, but 1 or 10 samples in our method. Angular acceler-
ation, linear acceleration, and measurement noise compo-
nents were set to r _x ¼ 0:007, r _v ¼ 0:004 and rn = 1.0,
respectively, in common for all test sequences.

Table 4 shows the RMS error and computation time for
all five implementations. To obtain the statistical value of
the RMS error, PF, EKF and our method iterated 10 times
for each test sequence. PF showed poor performance
although it used 500 samples, 50–500 times more than
our method. The RMS error of PF was about 4–7 times
larger than our method. EKF showed a better performance
than PF, but worse than our method. The RMS error of
EKF was sub-pixel in all test sequences, but the maximum
errors exceeded two pixels in the sequences 2 and 3. Our
method with M = 10 or 1 was faster than the nonlinear
method in all tests. Our method with M = 1 was slower
about 1.6 times, but more accurate than EKF. The maxi-
mum error of our method with M = 1 exceeded one pixel
in the sequence 2. As we see in the table, our method was
accurate comparable to the nonlinear method in contrast
to other methods. In addition, the results show that our
method makes it possible to control the tradeoff between
accuracy and computation time by adjusting the number
of samples.

In Fig. 7, we plotted the RMS error of EKF, the nonlin-
ear method, and our method with M = 10. We did not plot
the RMS error corresponding to PF and the linear method
since the error values of these two methods were too large.
Our method was more accurate and stable than EKF, and
also as accurate as the nonlinear method. Note that our
e test sequences 1, 2, and 3 in order.



Table 4
Comparison of the RMS error and computation time among methods on the three test image sequences

Sequence Method RMS error (pixel) Time (s)

Avg. Min. Max.

Sequence 1 PF 5.05 0.67 7.82 38.2
EKF 0.51 0.35 0.91 1.5
Linear method 13.3 1.22 31.6 0.4
Nonlinear method 0.47 0.34 0.63 81.8
Our method (M = 1) 0.47 0.35 0.64 2.4
Our method (M = 10) 0.46 0.34 0.62 25.4

Sequence 2 PF 2.81 1.08 7.16 42.4
EKF 0.84 0.41 2.08 0.6
Linear method 13.8 2.09 36.3 0.3
Nonlinear method 0.61 0.39 1.02 81.7
Our method (M = 1) 0.66 0.39 1.56 0.9
Our method (M = 10) 0.61 0.38 1.00 10.1

Sequence 3 PF 3.52 0.93 13.0 52.0
EKF 0.99 0.47 3.29 0.9
Linear method 21.6 0.62 56.6 0.4
Nonlinear method 0.58 0.45 0.84 105.4
Our method (M = 1) 0.59 0.43 0.90 1.5
Our method (M = 10) 0.57 0.42 0.82 17.2
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Fig. 7. Plots of the RMS error in the camera motion estimated from (a) Sequence 1, (b) Sequence 2, and (c) Sequence 3.
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Fig. 8. Video augmentation results for Sequence 1. (a) Shows the location and pose of a virtual object at the first frame. (b) and (c) are the 90th augmented
images of the video augmentation result obtained by the linear method and our method, respectively.
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method was more accurate and stable than EKF even
though it used only one sample.
5.3. Video augmentation results

To show the effectiveness of our camera resectioning
method compared to the linear and nonlinear methods in
the off-line video-based augmented reality, we applied the
camera resectioning results of the preceding subsection to
the video augmentation for the three test sequences. Due
to space limitations, we showed only the video augmenta-
tion results for Sequence 1, obtained by the linear method
and our method.

Video augmentation is firstly accomplished by embed-
ding the graphic coordinate system into the world co-
ordinate system of real video. In our augmented reality
system, the embedding procedure is achieved by specifying
the graphic coordinate system in two images of target video
as in the work of Seo and Hong (2000). This procedure
is guided by the epipolar geometry (Forsyth and Ponce,
2002) between the two images. The estimated camera
motion is used to compute the epipolar geometry for imple-
menting the embedding procedure.

Fig. 8 shows that a virtual object were correctly embed-
ded into the world coordinate system of Sequence 1 in our
method, unlike the linear method. Here, we used the first
and 90th frames in the embedding procedure of our video
mixing system in Fig. 1. A virtual object was inserted at
the origin of each graphic coordinate system. The 90th aug-
mented images of the video augmentation result obtained
by the linear method and our method were shown in
Fig. 8(b) and (c), respectively. The result of the nonlinear
method were similar to ours. If we compare the locations
of the virtual object in Figs. 8(a) and (b), we can observe
that the linear method reveals a misalignment of the virtual
object with the real scene. As we can see in Fig. 8(c), the
video augmentation result of our method dose not have
such misalignment.
6. Conclusions

We proposed a new recursive framework for camera
resectioning and applied it to off-line video-based aug-
mented reality. Our method is based on unscented particle
filter and independent Metropolis–Hastings chain. The
proposed method enabled us to propagate the mean and
the covariance of the camera system state with high accu-
racy. We modelled the proposal distribution of our method
with a mixture of a Gaussian distribution. This makes it
possible to accurately estimate variables with a small num-
ber of samples in contrary to other particle filters. To effi-
ciently generate samples from the proposal distribution, we
combined an unscented Kalman filter and the independent
Metropolis–Hastings chain into our sampling procedure.
As a result, the proposed method overcomes the initiali-
zation problem in camera resectioning, and recursively
estimates the motion of camera with high accuracy compa-
rable to nonlinear optimization methods. We verified the
effectiveness of our method by using several experiments
using some synthetic and real image sequences and com-
pared the estimation performance with other linear and
nonlinear camera resectioning methods. We also demon-
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strated the video augmentation based on our recursive
camera resectioning algorithm.

Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.patrec.2006.
11.012.
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