
Higher Type Recursion, Ramification and Polynomial Time

S. Bellantoni∗ K.-H. Niggl† H. Schwichtenberg

November 8, 2007

Abstract

It is shown how to restrict recursion on notation in all finite types so as to characterize the
polynomial time computable functions. The restrictions are obtained by using a ramified type
structure, and by adding linear concepts to the lambda calculus.

1 Introduction

Recursion in all finite types was introduced by Hilbert [8] and later became known as the essential
part of Gödel’s system T [7]. This system has long been viewed as a powerful scheme unsuitable for
describing small complexity classes such as polynomial time. Simmons [17] showed that ramification
can be used to characterize the primitive recursive functions by higher type recursion. Leivant
[13] used ramification notions with all finite types in order to characterize the Kalmar-elementary
functions. Leivant and Marion [15] showed that another form of ramification can be used to restrict
higher type recursion to PSPACE. However, to characterize the much smaller class of polynomial-
time computable functions by higher type recursion, it seems that an additional principle is required.
By introducing a liberalized form of linearity (allowing multiple use of ground types results) in
conjunction with an extension of ramification concepts (as considered e.g. by Simmons [17], Leivant
[13], and Bellantoni and Cook [1]) to all finite types, we characterize polynomial-time computability.

Based on simple types built from the ground type ι of binary numerals by →, recursion on
notation in type σ is a mapping Rσ of type σ → (ι → σ → σ) → ι → σ defined by

Rσ g h0 = g

Rσ g h (sin) = h(sin)(Rσghn).

Now a single recursion in type ι → ι can define a function of exponential growth:

e := Rι→ι s1 (λuιV ι→ιyι.V (V y))

satisfies |e(m)(n)| = 2|m| + |n| (where as usual |n| = dlog2(n + 1)e). Note that the function e can
be assigned a ramified type under the scheme of Leivant [15], in which m is tier 1 and n is tier 0.

∗Research supported by: Graduiertenkolleg “Logik in der Informatik” der DFG, München. Assistance of the
Fields Instituted for Research in Mathematical Sciences, Toronto is gratefully acknowledged.

†Technische Universität Ilmenau, Institut für Theoretische und Technische Informatik, Fachgebiet Komplexitäts-
theorie, PF 100565, 98684 Ilmenau, Germany. The author was affiliated with LMU while this paper was written.

1

What this shows is that another requirement, in addition to ramification of the recursion variable,
is required to restrict higher type recursion to polynomial-time computability. The problem seems
to lie in the nested, nonlinear use of the previous value V . Our approach is to introduce at the
same time both ramification of the recursion variable and linearity conditions.

To do so we enrich the type structure with the formation of types !σ, called complete types;
all other types are called incomplete. Intuitively, objects of complete types are completely known;
they can be used as the pattern for a recursion, or if they are of higher type they can be used in a
non-linear way. Objects of incomplete types can only be accessed through a few low-order bits, or
if they are of higher type, can be used in a certain linear way only. Then we define the class RA of
ramified affinable terms. The recursor Rσ receives the ramified type σ →!(!ι → σ → σ) →!ι → σ
and is admitted for any !-free σ; as well, we require that terms of complete type have no free
variables of incomplete types. Input positions of types !ι and ι correspond to normal / tier 1 and
safe / tier 0 input positions, common in earlier work on ramified recursion (cf. [17, 12, 1, 3, 16]).
Affinability is central to the system and expresses the linearity constraints for bound variables of
incomplete types. Affinability is designed such that the system RA is closed under reduction.

We show that for each closed RA-term t of type level 1, one can find a polynomial pt such
that for all numerals ~n, one can compute the normal form nf(t~n) in time pt(|~n|). Thus, t denotes a
polynomial time computable function. The converse also holds, as each polynomial time computable
function is computed by some RA-term. Observe that there are two normalizations required to
compute t~x for specific values ~n of ~x. (i) Normalize t to u, say, which may take a long time (not
polynomial in the length of t). (ii) Normalize u~n, which will take polynomial time in the length of
~n. One may view (i) as a (complex) compilation step, producing efficient code.

Recently, Hofmann [9, 10] used modalities of ramification and of linearity in a lambda calculus,
and defined them for all higher types. This interesting work also characterizes polynomial time
computability. However, the proof methods of the two papers are completely different, as Hofmann
uses a category-theoretic approach.

There are some connections between the present work and the “light linear logic” of Girard [6];
but due to differing frameworks an exact comparison has not been made.

The approach to higher-type functions taken in this work contrasts with Cook and Kapron’s
well-known Basic Feasible Functions (BFF) defined by PVω terms [4]. There, explicit size bounds
are used and the critical value computed during the recursion is of ground type. A further difference
can be seen by the fact that the system RA admits the iteration functional I satisfying I(f, x, y) =
f (|x|)(y), whereas I is not BFF. On the other hand, one intuitively expects that in some suitable
sense BFF functions should be definable in RA.

2 Types and terms

The types are: ι is a type, and if σ and τ are types, then so are σ → τ and !σ. We assume ! binds
tighter than →, and → associates to the right.1

Types of the form !σ are complete; all others are incomplete. In what follows, iterated !’s are not
needed, however, for technical simplicity, they are allowed. Ground types are the types of level 0,
defining level by: l(ι) = 0; l(!σ) = l(σ); and l(σ → τ) = max{l(τ), 1 + l(σ)}. A higher type is any

1Linear logicians may read “→” as “(”.

2

type of level at least 1. For example, !!ι is a ground type, but ι → ι is a higher type. !-free types
are called safe. Every ground type is either safe or complete.
The constant symbols are listed below, with their types.

0 ι
s0 ι → ι (binary successor x 7→ 2·x)
s1 ι → ι (binary successor x 7→ 2·x + 1)
p ι → ι (binary predecessor x 7→ bx

2 c)
cσ ι → σ → σ → σ → σ for σ safe (cases in type σ)
Rσ σ →!(!ι → σ → σ) →!ι → σ for σ safe (recursion in type σ)

Terms are built from these constants and typed variables xσ by introduction and elimination rules
for the two type forms σ → τ and !σ, i.e.

(λxσ.rτ)σ→τ , (rσ→τsσ)τ , (!rσ)!σ, (r!σκ)σ.

We write r!σκ (rather than κr!σ) in order to have available a uniform notation for elimination terms
ts1 . . . sn with si either a term or κ.

A binary numeral is either 0 or si1 . . . siks10 where ij ∈ {0, 1}. In the conversion rules below we
assume that sin is a binary numeral (hence distinct from 0).

(λx.r)s 7→ r[s/x]
(!r)κ 7→ r

s00 7→ 0

p0 7→ 0

p(sin) 7→ n

c0rt0t1 7→ r

c(sin)rt0t1 7→ ti

R g h !0 7→ g

R g h !(sin) 7→ hκ !(sin) (R g h !n)

Here an application of ! onto a term associates tighter than other applications, and to the right,
while other applications associate to the left. Thus Rgh!n is (((Rg)h)(!n)).

The length |t| of a term t is defined by |x| = |c| = 1; |λx.r| = |!r| = |rκ| = |r|+1; |rs| = |r|+|s|+1.
Redexes are subterms shown on the left side of conversion rules above. A term is in normal form
if it does not contain a redex. For every term t there is a unique normal-form term nf(t) (see e.g.
[18, 11] for proofs of normalisation in Gödel’s system T). Two terms are equivalent if they have
the same normal form.

One writes FV(t) for the set of free variables of t, and FO(x, t) for the number of free occurrences
of x in t. Say that a term is complete, incomplete, safe, or ground if its type is.

Similar to Gödel’s T , types and terms are interpreted over the set theoretical function spaces.
Thus, in the semantics we identify objects of type !σ with those of type σ, since we are only
interested in the computational behaviour of terms. We interpret ι as the non-negative integers.
The value [[t]]ϕ of a term t in an environment ϕ is defined as usual, where [[!r]]ϕ := [[r]]ϕ and
[[rκ]]ϕ := [[r]]ϕ. As the value of a closed term t is independent of any environment, we just write [[t]].

3

3 RA-terms

Two subterms ai and aj occurring in a term t are scope equivalent if whenever λy binds a variable
free in either ai or aj , then both ai and aj lie within the scope of the λy.

Definition. Let x be an incomplete variable, and let s be a term.
1. An affination of x in s is a ground type subterm aι with FO(x, a) = 1 such that every free

occurrence of x in s is in an occurrence of a in s, where the occurrences of a are scope equivalent
in s.

2. We call x affinable in s if there is an affination of x in s or FO(x, s) ≤ 1.

Every type ι variable is trivially affinable in every term, because it is an affination of itself.

Definition. r is an RA-term (R for ramified, A for affinable) if
(R) every complete subterm contains complete free variables only, and
(A) for every subterm λx.s with x incomplete, the variable x is affinable in a reduct of s.

As pointed out in the Introduction, one intuition is that terms of complete type can be used in
a non-linear way, while objects of higher incomplete type can be used only in a certain linear way
expressed by (A). Accordingly, (R) requires that complete terms have no incomplete free variables.
Non-primitive recursive growth rate is ruled out by this plus the requirement that step terms h in
Rσghn have complete types (cf. Simmons [17]): The previous value (V below) of an outer recursion
cannot be applied to the previous value of an inner recursion. In contrast, in Gödel’s T the function
Fω(x) = Fx(x), where F0(x) := x + 1 and Fn+1(x) := Fn

(x+1)(x), can be defined by

tFω := λxι.Rι→ι S (λuιV ι→ιyι.Rι y (λuιvι.V v) (Sy))xx

To obtain polynomial growth rate we additionally require that recursion in type σ is admitted for
safe (i.e. !-free) types σ only – recall the type σ →!(!ι → σ → σ) →!ι → σ of Rσ in RA.

For ground type recursion, the system mimics the use of so-called safe (ι) and normal (!ι)
input positions in [1]: Previous values in recursions can only be passed to safe input positions,
i.e. input positions which do not induce the unfolding of recursions. Polynomially-growing functions
⊕ satisfying |m⊕ n| = |m|+ |n|, and ⊗ satisfying |m⊗ n| = |m| · |n|, are easily definable in RA:

t⊕ := λx!ιyι.Rι y !(λu!ιvι. s1v) x
t⊗ := λx!ιy!ι.Rι 0 !(λu!ιvι. t⊕ xv) y

The ability to form terms that have recursively computed outputs of type !ι, such as λx!i.!(x⊗ x),
distinguishes ground type recursions in RA or [1] from the systems of Leivant [14].

For higher type recursion, previous values can only be passed to safe affinable input positions.
Admitting recursion Rσ for incomplete σ would allow one to define proper Kalmar-elementary
functions; e.g. a function e′ satisfying e′(m,n) ≥ n2|m|

would then have an RA definition

R!ι→ι (λy!ι.yκ) !(λu!ιV !ι→ιy!ι. V !(tsq y))

where tsq := Rι (s10) !(λu!ιvι. s0(s0v)) defines the function sq(n) = 22|n|.
Affinability is designed to rule out nested occurrences of previous values in recursions, such as

that used to define e in the Introduction. It requires that if we lambda abstract a higher-type

4

incomplete variable x in r, then either FO(x, r) ≤ 1 or else the free occurrences of x in r can be
separated by the occurrences of one and the same ground type context a, the affination of x in r.

If x is affinable in r and r −→ r′, then x need not be affinable in r′. To obtain a system closed
under reduction, condition (A) requires that x is affinable in a reduct of r.

Terms with property (R) are not closed under application, as one may form e.g. Xι→!ιyι, or
else (λyι. !0)y. However, if rs is incomplete and r, s satisfy (R), then so does rs. It is also rather
immediate that terms with property (R) are closed under reductions. This is also true for RA-terms,
as we will prove next.

Theorem 3.1 (Closure under reduction). Let r be an RA-term.
(1) If r −→ r′, then r′ is an RA-term.
(2) If x is affinable in r, then x is affinable in nf(r).

Proof. We show (1) and (2) by induction on the height h(r) of the reduction tree for r, and side
induction on r. Assuming (1) and (2) for terms s with h(s) < h(r), we proceed to prove first (1)
and then (2) for r.

For the proof of (1), let r be an RA-term, and assume r −→ r′. Since terms with property (R)
are closed under reductions, it suffices to consider a subterm λx.s′ of r′ where x is incomplete, and
prove that x is affinable in a reduct of s′. We proceed by distinguishing two cases.

Case s′ = s[t/y] for a subterm λx.s of r. By assumption x is affinable in a reduct of s. Then x
is also affinable in a reduct of s′, since x /∈ FV(t).

Case s −→ s′ for a subterm λx.s of r. We distinguish two subcases.
Subcase x is affinable in s. Then s −→ s′ −→∗ nf(s), and by the side IH (2) for s, x is affinable

in nf(s) = nf(s′). Hence x is affinable in a reduct of s′, namely nf(s′).
Subcase x is affinable in a reduct of s. Then we find ourselves in the situation:

s → s1 → . . . → sn, x affinable in sn

↓
s′

By the side IH (1) at s, s1 is an RA-term. Successively applying the IH (1) to s1, . . . , sn−1, one
obtains that sn is an RA-term. Thus, by the IH (2) at sn, x is affinable in nf(sn) = nf(s′).

For the proof of (2), let r be an RA-term and assume that x is affinable in r. If r is normal we
are done. So assume r −→ r′. Again, we proceed by distinguishing two cases.

Case there is an affination a of x in r. We may assume that there is a redex in a (otherwise, x
is affinable in r′ and the claim follows by (1) giving that r′ is an RA-term and then IH (2) giving
that x is affinable in nf(r)). Let r′′ be the reduct of r obtained by replacing all occurrences of a in
r with nf(a). Hence h(r′′) < h(r), and r′′ is an RA-term by (1). Then the claim follows from the
IH for (2), for either x has at most one free occurrence in nf(a) (then nf(a) is an affination of x in
r′′), or else there is an affination b of x in nf(a) (then b is an affination of x in r′′).

Case FO(x, r) ≤ 1. By (1) and the IH (2) we may assume FO(x, r′) ≥ 2, i.e. a subterm containing
x is duplicated during the reduction. Considering all reductions, the only ones which can duplicate
a subterm are R reductions and β reductions. But in the former case, the duplicated subterm of
r has complete type, hence by the property (R) cannot contain x. In the latter case, there is a
redex (λy.s)t in r with x ∈ FV(t) such that r′ is formed by replacing (λy.s)t with s[t/y]. Since r

5

satisfies (R) and t contains the incomplete variable x, it must be that t and hence y is incomplete.
As r satisfies (A), y is affinable in a reduct s′ of s. So let r′′ be obtained from r′ by replacing s[t/y]
with s′[t/y]. Then r′′ is an RA-term by (1), and r′ −→∗ r′′. Furthermore, x is affinable in r′′, for
if FO(y, s′) ≤ 1, then FO(x, r′′) ≤ 1, and if b is an affination of y in s′, then b[t/y] is an affination
of x in r′′. Therefore, applying the induction hypothesis (2) to r′′, we obtain that x is affinable in
nf(r′′) = nf(r).

Note. If t is an RA-term of type ~σ →!τ with ~σ all ground and no incomplete free variables, then
the incomplete argument types σi are redundant in the sense that t is equivalent to some RA-term
λ~x~σ.t1 where t1 has no free occurrence of an incomplete xi. To see this, first note that in a normal
RA-term t every subterm s of type !σ → τ which is not an abstraction can be η-expanded to an
RA-term λx!σ.sx. Observe that for σ → τ with σ incomplete this need not be possible, since λxσ.sx
violates (R) in case τ is complete. It is well known that such η expansions terminate in a unique
form, called the long normal form of t.

Now we argue as follows. Let s := λxσ1
1 . . . xσm

m .t
σm+1→···→σn→!τ
1 be the long normal form of t

where t1 is not an abstraction. It suffices to show that m = n, for then t1 has type !τ and hence
by (R) has no free occurrence of an incomplete variable xi. Suppose that m < n. Since t is in long
normal form, σm+1 must be incomplete. As t1 is not an abstraction, the head of t1 cannot be a
constant (by the typing of our constants) and hence must be an incomplete higher type variable y,
so it is distinct from ~x. But this contradicts the assumption on t.

4 RS-terms

In our final result we will only be interested in ground type terms t whose free variables are of
ground type. We first observe that – due to the typing of our constants – in the normal form of
any such term all variables are safe or ground.

Lemma 4.1. Let t be a ground type term whose free variables are of ground type. Then in nf(t)
all variables are safe or ground.

Proof. Suppose a variable xσ with σ neither safe nor ground occurs in nf(t). It must be bound
in a subterm (λxσ.r)σ→τ of nf(t). Now from the structure of normal derivations in the system of
propositional logic consisting of introduction and elimination rules for → and ! it follows (cf. [18,
p.84]) that σ → τ either occurs positively in the type of nf(t), or else negatively in the type of one
of the constants or free variables of nf(t). The former is impossible since t is of ground type, and
the latter by inspection of the types of the constants.

Now if a normal ground type term with only ground free variables satisfies (A), then for every
subterm λx.s with x higher type (and hence safe), the variable x is affinable in s (since each reduct of
s is s itself). Therefore by repeated ground type β expansions, viewed as a kind of sharing construct,
we can obtain an equivalent term containing each higher type variable at most once: if e.g. s is
. . . a . . . a . . . with a an affination of x in s, replace λx. . . . a . . . a . . . by λx.(λyι. . . . y . . . y . . .)a.

Lemma 4.2 (Sharing). Let t be a term such that for every subterm λx.s with x higher-type
incomplete, the variable x is affinable in s. Then by repeated βι-expansions r[a/yι] 7→ (λy.r)a one
can construct a term β(t) from t (hence β(t) −→∗ t) such that for every subterm λx.s in β(t) with
x higher-type incomplete, FO(x, s) ≤ 1.

6

Proof. By induction on the number of occurrences of bound higher-type incomplete variables. Con-
sider an outermost subterm λx.r with x higher-type incomplete and FO(x, r) ≥ 2. By assumption
x has an affination a in r. Let u be the minimal subterm of r such that u contains all occurrences
of a in r. Now let t′ result from t by replacing u with (λy.u[y/a])a for some new variable y.2

To apply the induction hypothesis to t′, one must show that every affination in t inside λx.r
results in an affination in t′. To see this, let λz.s be a subterm of r such that z has an affination
b in s. If a has no occurrence in s, then b is still an affination of z in t′. Otherwise by scope
equivalence, either all occurrences of a are in s and z ∈ FV(a), or else no occurrence of a in s has a
free occurrence of z. In the latter case, either a occurs in b, in which case b[y/a] is an affination of z
in t′, or else a, b are separated, in which case b is still an affination of z in t′. In the former case, the
minimality of u implies that u is in s. By construction t′ results from t by replacing the subterm u
of s with (λy.u[y/a])a for some new y. Since z has a free occurrence in both a and b, there are two
cases. If a is a subterm of b, then each occurrence of b contains exactly one occurrence of a, for b
is an affination of z in s. By construction it follows that a is an affination of z in t′. Otherwise if b
is a subterm of a, then by construction b is still an affination of z in t′.

This might motivate why it will be useful to consider a subset of the set of RA-terms, to be
called RS-terms, where S stands for sharing.

Definition. An RA-term is an RS-term if it has safe or ground variables only, and
(S) every higher type variable occurs at most once.

Every RS-term t can be written uniquely in head form, being of the form U~r, where U is a
variable, a constant, !s or sκ; or else U is λx.s with FO(x, s) ≤ 1, or U is λx.s with FO(x, s) > 1
and x ground. Call ~r, s, x, and U the components of t. Components are specified by numbering
them in order from left to right. A general term formation is an operation on terms, resulting in
the formation of a term t~v, (tκ)~v, (!t)~v, (λx.t)~v, or (t[s/x])~v, where t, x and s are any components
of the given terms and ~v are optional trailing components of one of the given terms.

The algorithms nf and rf described below use a register machine model of computation, where
each register may contain a term. One has an unlimited supply of registers u, v, w etc. A primitive
computation step is any of the following operations: copying from one register to another; allocation
of a new register and initializing it to contain a constant or a new variable; renaming of all free
and bound variables simultaneously; test on the head form and branch; test on the head form and
perform a general term formation.

In particular, each of the following takes one primitive step: test on the head form of t and copy
any component of t into a register; test on (λx.s)r~r with FO(x, s) > 1 and formation of r and s~r;
test on (λx.s)r~r with FO(x, s) ≤ 1 and form the term s[r/x]~r; test on cσt1t2t3t4~r, and formation
of t1 and tj~r for some j ∈ {2, 3, 4}; test on (!s)κ~r, and formation of the term s~r.

It can be easily seen that these operations can be simulated by a Turing machine in time poly-
nomial in the lengths of the terms involved (cf. e.g. [5]).

One associates a unique environment register ux with each variable x. A numeral is a binary
numeral preceeded by any number of !’s. An environment is a list ~n; ~x := n1, . . . , nk;x1, . . . , xk

where each ni is an RS-term of the same type as xi. A numeral environment is an environment
~n; ~x such that each ni is a numeral.

2We write u[y/a] for u with all occurrences of a simultaneously replaced with y.

7

Theorem 4.3. For every R-free RS-term t of ground type and numeral environment ~n; ~x such that
FV(t) ⊆ ~x,

(i) one can compute nf(t[~n/~x]) in at most 2|t| steps,
(ii) the number of used registers is ≤ |t|+ #~n, and
(iii) every term s occurring in the computation satisfies |s| ≤ |t|+ max |ni|.

Proof. We describe the algorithm nf, which at input t, ~n; ~x outputs nf(t, ~n; ~x) = nf(t[~n/~x]) in the
input register of t, by induction on |t|. For type reasons, t is of the form U~r where U is either a
variable among ~x or a constant or !, or else U is (λx.s)r, where FO(x, s) ≤ 1 or x is of ground type.

If t is 0, then output 0. We have performed two steps, and (ii), (iii) are obvious.
If t is xiκ . . . κ with k occurrences of κ, then delete k leading !’s from the content of uxi and

output the resulting numeral. We have performed k + 2 ≤ 2|t| steps, using 2 ≤ |t|+ #~n registers,
and (iii) is obvious.

If t is Ur where U is a symbol s1, !, first compute n := nf(r, ~n; ~x), then form Un. We have
performed ≤ 2 + 2|r| ≤ 2|t| steps, using ≤ 1 + |r|+ #~n ≤ |t|+ #~n registers, and (iii) follows.

If t is s0r, first compute n := nf(r, ~n; ~x), then output 0 if n = 0, otherwise form s0n. We have
performed ≤ 3 + 2|r| ≤ 2|t| steps, using ≤ 1 + |r| + #~n ≤ |t| + #~n registers. As for (iii), observe
that |s0n| ≤ 2 + |r|+ max |ni| = |t|+ max |ni|.

Similarly, if t is pr, first compute n := nf(r, ~n; ~x), then form n′ if n = sin
′, else output 0.

If t is (!s)κ~r, compute nf(s~r, ~n; ~x), in ≤ 4 + 2|s~r| ≤ 2|t| steps, using ≤ |s~r| + #~n registers. (iii)
follows directly from the induction hypothesis on s~r.

If t is cσt1t2t3t4~r, first compute n := nf(t1, ~n; ~x), and then compute nf(tj~r, ~n; ~x) where j := 2
if n = 0, and j := i + 3 if n = sin

′. We have performed ≤ 2 + 2|t1| + 2|tj~r| ≤ 2|t| steps, using
≤ 1 + max(|t1| + #~n, |tj~r| + #~n) ≤ |t| + #~n registers. (iii) follows directly from the induction
hypothesis on tj~r.

If t is (λx.s)r~r with FO(x, s) > 1, then x has ground type. First compute n := nf(r, ~n; ~x), copy n
to ux, then compute nf(s~r, ~n, n; ~x, x). Observe that r is of ground type, and ~n, n; ~x, x is a numeral
environment such that FV(s~r) ⊆ ~x, x. We have performed ≤ 2 + 2|r| + 2|s~r| ≤ 2|t| steps, using
≤ 1 + max(|r| + #~n, |s~r| + #~n + 1) ≤ |t| + #~n registers. As for (iii), observe |nf(s~r, ~n, n; ~x, x)| ≤
|s~r|+ max(|ni|, |n|) ≤ |s~r|+ |r|+ max |ni| ≤ |t|+ max |ni|.

If t is (λx.s)r~r with FO(x, s) ≤ 1, compute nf(s[r/x]~r, ~n; ~x). Since |s[r/x]~r| < |t|, we have
performed ≤ 1 + 2|s[r/x]~r| ≤ 2|t| steps, using ≤ |s[r/x]~r|+ #~n registers, and (iii) is obvious.

Corollary 4.4 (Base Normalisation). Let t be a closed R-free RS-term of ground type. Then
the numeral nf(t) can be computed in at most 2|t| steps using ≤ |t| registers, and every term s
occurring in the computation satisfies |s| ≤ |t|.

In order to compute R-free RS-terms t, we slightly generalise the technique above.

Theorem 4.5 (R-Elimination). Let t be an RS-term of safe or ground type. There is a polynomial
qt such that: if ~n are closed ground type R-free RS-terms with FV(t[~n/~x]) all safe, then one can
compute an R-free RS-term rf(t, ~n; ~x) equivalent to t[~n/~x] such that the number of steps, the number
of used registers and the length of every term occurring in the computation all are ≤ qt(

∑
|ni|).

8

Proof. By induction on |t|. Let m :=
∑
|ni|. We write #steps, #registers and maxlength for the

three quantities above, and call their maximum bound. Of course, the computed term rf(t, ~n; ~x)
will be such that no new free variables are produced, i.e. FV(rf(t, ~n; ~x)) ⊆ FV(t[~n/~x]).

If t is λz.r, then compute r∗ := rf(r, ~n; ~x) and form t∗ := λz.r∗. Observe that z and r are safe
because t has safe type, hence r[~n/~x] has safe free variables only. By the induction hypothesis the
R-free RS-term r∗ is obtained with bound qr(m). Hence t∗ is an R-free RS-term obtained with
bound |t|+ qr(m).

If t is Ur1 . . . rl with U a variable y 6= xi or one of the constants 0, s0, s1,p, cσ, then each ri

is a safe or ground type term or else is κ. Apply the induction hypothesis to all RS-terms ri to
obtain suitable R-free RS-terms r∗i := rf(ri, ~n; ~x). Then form t∗ := Ur∗1 . . . r∗l and rename t∗ so as
to obtain an RS-term. Here we need that the ~n are closed, for otherwise a free variable in ~n might
be duplicated, thus violating the (S) property. Using the induction hypothesis, t∗ is obtained with
bound |t|+ 1 +

∑
qri(m).

If t is (λx.s)r~r with FO(x, s) > 1, then x must be of ground type, since t satisfies (S). We
distinguish two cases: If x is safe, we first rename t, then form r and s~r (in one step), and
compute s∗ := rf(s~r, ~n; ~x) and r∗ := rf(r, ~n; ~x). Finally, we form (λx.s∗)r∗, and rename it so as
to obtain an RS-term. Using the induction hypothesis the result term is obtained with bound
|t|+ 6 + qs~r(m) + qr(m). Otherwise if x is complete, first form r and s~r (in one step) and compute
n := rf(r, ~n; ~x), then copy n to ux and compute rf(s~r, ~n, n; ~x, x). Using the induction hypothesis
the result term is obtained with bound is |t|+ qr(m) + qs~r(m + qr(m)).

If t is (λx.s)r~r with FO(x, s) ≤ 1, form t′ := s[r/x]~r (in one step) and compute rf(t′, ~n; ~x). Using
the induction hypothesis the result term is obtained with bound |t|+ qt′(m).

The case (!s)κ~r is treated similarly to the previous case, and the case t = xi is obvious.
Because t is safe, the only remaining case is where t is of the form Rghnr1 . . . rl. Then we will

output a renamed version of the term

(T0(T1 . . . (Tk−1g
∗) . . .))r∗1 . . . r∗l

with g∗ := rf(g, ~n; ~x), k := |[[N]]| where !N := nf(rf(n,~n; ~x)), Ti := rf(hκz, ~n, !Ni; ~x, z) for some
new variable z, where Ni is obtained from N by deleting the first i leading constants s0 or s1, and
r∗j := rf(rj , ~n; ~x).

Since n is a complete subterm of a term satisfying (R), all free variables of n are complete. Hence
n[~n/~x] is closed, since all free variables of t[~n/~x] are safe. Therefore, nf(n[~n/~x]) is a numeral. One
obtains rf(n,~n; ~x) with bound ≤ qn(m) by the induction hypothesis. Then by Base Normalization
(4.4) one obtains the numeral !N := nf(rf(n,~n; ~x)) = nf(n[~n/~x]) with

#steps ≤ 2|rf(n,~n; ~x)| ≤ 2qn(m), #registers ≤ qn(m), maxlength ≤ qn(m).

We now compute the term T0(T1 . . . (Tk−1g
∗) . . .) by an obvious loop with k ≤ |N | ≤ qn(m)

rounds. However, to obtain an estimate on our bound, we need to look into some details. First
pick a new variable z and write hκz into a fixed register v. Then, compute g∗ := rf(g, ~n; ~x) with
bound ≤ qg(m) in a result register u, and consider the register w holding N = N0 as counter.
If w holds Ni = 0, output the content of register u, i.e. g∗. Otherwise, w holds Ni 6= 0 and u
holds (Tk−i . . . (Tk−1g

∗) . . .). Compute !Nk−i−1 from N and Ni in the environment register uz;
this clearly is possible with some bound q1(|N |) ≤ q1(qn(m)) for some polynomial q1. Compute

9

Tk−i−1 := rf(hκz, ~n, !Nk−i−1; ~x, z) in v, with bound qhκz(m+ |Nk−i−1|) ≤ qhκz(m+ qn(m)). Update
u by applying the content of v onto u’s original content. This gives Tk−i−1(Tk−i . . . (Tk−1g

∗) . . .)
in one step, with no additional register and maxlength increased by |Tk−i−1| ≤ qhκz(m + qn(m)).
Finally, update w to hold Ni+1 and go to the initial test of the loop.

Let us now estimate our bound. We go k ≤ |N | ≤ qn(m) times through the loop. The number
of steps in each round is

≤ 1 + q1(|N |) + qhκz(m + |Nk−i−1|) + 2 ≤ 1 + q1(qn(m)) + qhκz(m + qn(m)) + 2.

The number of registers used is 3 (for v, u, uz) plus q1(qn(m)) (to compute !Nk−i−1) plus qhκz(m +
qn(m)) (to compute Tk−i−1), and the maximum length of a term is

qn(m) + qhκz(m + qn(m)).

Hence the total bound for this part of the computation is(
3 + qn(m) + qhκz(m + qn(m))

)
· qn(m).

Finally, in a loop with l rounds, compute r∗j := rf(rj , ~n; ~x) with bound qrj (m), assuming u holds
(T0(T1 . . . (Tk−1g

∗) . . .))r∗1 . . . r∗j−1, and update u by applying this term to r∗j .
The total number of steps, used registers and lengths of used terms are therefore ≤ qt(m) with

a polynomial qt explicitely definable from qn, qhκz, qg and all qr∗j
.

5 Polynomial time computable functions

In this last section we complete the proof that the number theoretical functions definable by RA-
terms are exactly the polynomial-time computable functions.

Theorem 5.1 (Bounding). Let t be a closed RA-term of type σ1, . . . , σk → τ , where σ1, . . . , σk, τ
all are ground. Then one can find a polynomial pt such that for all numerals n1, . . . , nk with types
σ1, . . . , σk respectively, one can compute the numeral nf(t~n) in time pt(

∑
i |ni|).

Proof. One must find a polynomial pt such that for all numerals ~n of types ~σ, one can compute
nf(t~n) in time pt(m) with m :=

∑
i |ni|. Let ~x be new variables of types ~σ. We consider two cases.

Case τ is safe. Since t is an RA-term, so is t~x. The normal form of t~x is computed in a number
of “steps” that is large but still only a constant with respect to ~n. By closure under reduction
(3.1) this is an RA-term, with only ground free variables. Note that by (4.1) all variables in
nf(t~x) are safe or ground. Since nf(t~x) is a normal term satisfying (A), for every subterm λx.s
with x higher type the variable x is affinable in s. Hence by Sharing (4.2) one obtains an RS-
term t′ := β(nf(t~x)) equivalent to t~x. Let c be the number of “steps” needed to compute t′. By
R-Elimination (4.5) one obtains an R-free RS-term rf(t′, ~n; ~x) equivalent to t′[~n/~x] and hence to
t~n. This requires at most qt′(m) steps, and uses at most this many registers of this size. As the
output is in a register, this also bounds the length |rf(t′, ~n; ~x)|. Using Base Normalization (4.4) one
obtains nf(t~n) = nf(rf(t′, ~n; ~x)) in a total of c + 3qt′(m) steps using at most this many registers of
this size. Since moving from our register machine computations to Turing machine computations
requires only a p-time transformation, qtime say, we have thus computed the numeral nf(t~n) in time
pt(m) := c′ + 3qt′(m)qtime(qt′(m)) for some constant c′.

10

Case τ is complete. Then by a note in section 3, all safe input positions σi of t are redundant.
Hence [[nf(t~n)]] = [[nf(t~n′)]] where ~n′ results from ~n by replacing each safe ni with 0. Therefore
it suffices to compute nf(t~n′). To this end, consider the RA-term t~x′ where ~x′ results from ~x
by replacing each safe xi with 0. Let ~n′′, ~x′′ result from ~n, ~x respectively by cancelling all safe
components. Observing that [[t~n′]] = [[t~x′[~n′′/~x′′]]] = [[t′[~n′′/~x′′]]] where t′ now is β(nf(t~x′)), the
argument in the first case carries over to t~x′ and ~n′′; ~x′′. One obtains the same bound pt.

It remains to embed the polynomial time computable functions into the system of RA-terms.
One could use any of the resource-free function algebra characterizations [1, 3, 16] of the polynomial
time computable functions; we pick [1].

Theorem 5.2. Every function f computable in polynomial time on a Turing machine, is denoted
by an RA term tf .

Proof. In [1] the polynomial time computable functions are characterized by a function algebra B
based on the schemata of safe recursion and safe composition. There every function is written in
the form f(~x; ~y) where ~x; ~y denotes a kind of bookkeeping of those variables ~x involved in a safe
recursion in the definition of f , whereas ~y denotes those variables on which no recursion has been
performed. We proceed by induction on the definition of f(~x; ~y) in B, associating to f a closed
RA-term tf of type ~!ι;~ι → ι such that tf is denoting f , i.e. [[tf]] = f .

If f is an initial function 0, si(; y), p(; y) or c(; y1, y2, y3), then tf := f . If f is a projection πm,n
j

satisfying πm,n
j (x1, . . . , xm;xm+1, . . . , xm+n) = xj , define tf := λx1 . . . xm+n.uj where uj := xjκ if

j ≤ m, and uj := xj otherwise.

If f is defined by safe composition from g,~g,~h, that is, f(~x; ~y) := g(~g(~x;);~h(~x; ~y)) where #~g =: m
and #~h =: n, then define tf := λ~x~y. tg!(tg1~x) . . .!(tgm~x)(th1~x~y) . . . (thn~x~y) where ~x all are of type !ι,
and ~y all are of type ι.

Finally, if f is defined by safe recursion from g, h0, and h1, then f(0, ~x; ~y) = g(~x; ~y) and
f(six, ~x; ~y) = hi(x, ~x; ~y, f(x, ~x; ~y)) for six 6= 0. Using the induction hypothesis to obtain th0 and
th1 , first define th = λn~x~yz. cι n0 (th0(pn)~x~yz) (th1(pn)~x~yz)). The case is finished by defining

tf := λx~x.R~ι→ι (tg~x) !(λu!ιV ~ι→ι~y. thu~x~y(V ~y))x

where x, ~x all are of type !ι, and ~y all are of type ι. In each case one easily verifies [[tf]] = f .

References

[1] S.J. Bellantoni and S. Cook. A New Recursion-Theoretic Characterization of the Polytime
Functions. Computational Complexity, 2:97–110, 1992.

[2] S.J. Bellantoni. Characterizing parallel polylog time using type 2 recursions with polynomial
output length. In D. Leivant, editor, Logic and Computational Complexity, Springer Lecture
Notes in Computer Science, 960:253–268, 1995.

[3] S.J. Bellantoni and K.-H. Niggl. Ranking Primitive Recursions: The Low Grzegorczyk Classes
Revisited. SIAM Journal of Computing, 29(2):401-415, April 2000.

11

[4] S.A. Cook and B.M. Kapron. Characterizations of the basic feasible functionals of finite type.
In S. Buss and P. Scott, editors, Feasible Mathematics, p. 71–98, Birkhäuser Boston, New York,
1990.

[5] M.D. Davis and E.J. Weyker. Computability, complexity and languages. Fundamentals of theo-
retical computer science. Acad. Pr., New York, 1983.

[6] J.Y. Girard. Light Linear Logic. Information and Computation, 143:175–204, 1998.

[7] K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialec-
tica, 12:280–287, 1958.

[8] D. Hilbert. Über das Unendliche. Mathematische Annalen, 95:161–190, 1925.

[9] M. Hofmann. A mixed modal/linear lambda calculus with applications to Bellantoni-Cook
safe recursion. Proceedings of CSL ’97, Aarhus. Springer Lecture Notes in Computer Science,
1414:275–294, 1998.

[10] M. Hofmann. Typed lambda calculi for polynomial-time computation. Habilitation thesis, TU
Darmstadt, 1998.

[11] F. Joachimski and R. Matthes. Short proofs of normalisation for the simply-typed λ-calculus,
permutative conversions and Gödel’s T. Submitted, 1998

[12] D. Leivant. Subrecursion and lambda representation over free algebras. In S. Buss and P. Scott,
editors, Feasible Mathematics, Perspectives in Computer Science, p. 281–291, Birkhäuser-
Boston, New York, 1990.

[13] D. Leivant. Predicative recurrence in finite type. In A. Nerode and Y. V. Matiyasevisch,
editors, Logical Foundations of Computer Science, Springer Lecture Notes in Computer Science,
813:227–239, 1994.

[14] D. Leivant. Ramified recurrence and computational complexity I: Word recurrence and poly-
time. In P. Clote and J. Remmel, editors, Feasible Mathematics II, Perspectives in Computer
Science, p. 320–343, Birkhäuser, 1994.

[15] D. Leivant and J.-Y. Marion. Ramified Recurrence and Computational Complexity IV: Pred-
icative Functionals and Poly-space. Information and Computation, to appear.

[16] K.-H. Niggl. The µ-Measure as a Tool for Classifying Computational Complexity. Archive for
Mathematical Logic, 1999. To appear.

[17] H. Simmons. The Realm of Primitive Recursion. Archive for Mathematical Logic, 27:177–188,
1988.

[18] A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory, Cambridge University Press, 1996.

12

