
Automatic Differentiation, C++ Templates and

Photogrammetry

Dan Piponi
ESC Entertainment

To be published in The Journal of Graphics Tools

September 13, 2004

Abstract

Differential calculus is ubiquitous in digital movie production. We give
a novel presentation of automatic differentiation, a method for comput-
ing derivatives of functions, that is not well known within the graphics
community and describe some applications of this method. In particular
we describe the implementation of a photogrammetric reconstruction tool
used on the post-production of Matrix Reloaded and Matrix Revolutions
that was built using automatic differentiation.

1 Introduction

Differential calculus has many applications in digital movie production. Its ap-
plications include rendering (anti-aliasing [Ige99], motion-blurring [Duf02]), an-
imation (inverse-kinematics, match-moving), modelling (determination of nor-
mals, photogrammetry [TMHF00]), simulation (implicit integration of equations
of motion [BW98]) and other miscellaneous applications (lens and colour calibra-
tion and other kinds of model fitting problem, optical flow estimation [HS81]).
There are a number of methods for writing software to compute derivatives of
functions and their approximations: deriving expressions analytically by hand
that are subsequently implemented as expressions in code, computer algebra
and finite differences. However, there is also another technique: automatic dif-
ferentiation. Unfortunately this approach is not well known within the graphics
community though there are some scattered references ([MH92],[Gle97],[HS98]).
It provides a way to compute multiple derivatives of highly complex functions ef-
ficiently and accurately. In this paper we will present one approach to automatic
differentiation and describe one application that was used with considerable suc-
cess during the post-production of Matrix Reloaded and Revolutions.

1



2 Theory

By definition, the derivative of a function f , written f ′(x) or df
dx is defined by

f ′(x) = lim
δ→0

f(x + δ)− f(x)
δ

(1)

Probably the most popular approach to computing derivatives within software
is to derive a symbolic expression for the derivative manually and then directly
code the resulting expression. This process can be generalised to line by line
differentiation of code. For example, suppose we know how to compute the
derivatives of the functions f and g. Then given the pseudocode

y ← f(x)
z ← g(x, y)

we can use the chain rule [Kap03] to transform it to the pseudocode

y ← f(x)
y′ ← f ′(x)
z ← g(x, y)

z′ ← ∂g(x, y)
∂x

+ y′
∂g(x, y)

∂y

that computes both the original y and z as well as their derivatives with respect
to x.

If the derivatives of f and g are unknown then we must implement func-
tions that compute f ′ and g′ in terms of the definitions of f and g using a
similar transformation. In this way we ultimately append to every line of code
containing a differentiable expression a new line to compute the derivative.

This method generalises naturally to longer code and to computing deriva-
tives with respect to multiple variables. However, differentiating code by hand
is a tedious and error prone process. Every modification to the code must be
repeated in differential form. Consider, for example, using the above process
to differentiate, with respect to 1000 variables, a function that requires 1000
lines of code to compute. One approach to this is to post-process our source
code with another tool that automatically differentiates code line by line. This
complicates the build process and puts constraints on coding styles.

A different approach is through the method of finite differences. In Equa-
tion (1) we can choose δ to be a small value, rather than take the limit as it
approaches zero, and compute (f(x + δ) − f(x))/δ. This is an approximation
to f ′(x) known as the forward difference. There is some difficulty associated
with choosing a suitable value for δ. Too large and the approximation to the
definition of the derivative is poor. Too small and we can expect the result to be
dominated by rounding errors. We can improve the accuracy using central dif-
ferences (i.e. (f(x+δ)−f(x−δ))/2δ) but the errors can still be large. Note also
that this requires two separate evaluations of f . If we generalise this method to
compute n partial derivatives of a function then we can expect to require n + 1
separate computations of f . See also Press at al. [PFTV92] for details of more
sophisticated approximations to the true derivative.

2



3 Dual Objects

There is however, in a language like C++ which supports the introduction of
new types and operator overloading, an elegant alternative method to compute
derivatives of a function. It is automatic, requires far fewer evaluations of the
function than finite differencing, is much more accurate than finite differenc-
ing, does not require post-processing of the code and results in code that is
easy to maintain and modify. Although the presentation will be different, the
implementation we will describe is very similar to that in [Jer89].

Return again to Equation (1) with the example f(x) = 2x2 + 1. If δ = d, a
small non-zero number, then the approximation to f ′(x) is given by

f(x + d)− f(x)
d

= (4dx + 2d2)/d = 4x + 2d

The exact derivative is 4x so we have an error term, 2d, with the same order
of magnitude as d. Note that this error is coming from the 2d2 term in the
numerator. If d2 is small compared to d then the error becomes small and the
approximation approaches the true value of the derivative. Ultimately, if d2

were zero then we could compute the derivative exactly, but unfortunately the
only choice for a real number d such that d2 = 0 is d = 0 and this renders
the whole computation meaningless. If we could find a non-zero number d such
that d2 = 0 then our problems would be solved. But where does one find such
a number?

Consider a related problem: When we meet the equation x2 + 1 = 0 for the
first time it appears that there is no solution. It turns out that we can find
a solution if we add new numbers to our number system. By convention we
add i with the property that i2 = −1. We may do the same with our problem.
We extend the real numbers by adding a new variable, d, with the property
that d2 = 0. As with the definition of i there are some additional properties
we require. For example commutativity so that ad = da and a + d = d + a for
any real number a. Assuming the existence of such a number we can rewrite
Equation (1) as

f(x + d) = f(x) + df ′(x)

Consider, for example, f(x) = xn.

f(x + d) = (x + d)n = xn + nxn−1d + d2(
n(n− 1)

2
xn−2 + . . .)

All of the terms after the first two are zero. So we can read off the derivative of
f(x) as the coefficient of d finding that f ′(x) = nxn−1 as expected.

We now have a strategy for computing derivatives: perform all of our func-
tion evaluations over the real numbers extended by d and read off the derivative
from the final coefficient of d. We will call these extended numbers dual numbers.
(These numbers were originally introduced by Clifford in 1873 [Cli73].)

3



4 Generic programming, polymorphism and op-
erator overloading

At first sight it may appear that it requires substantial work to extend math-
ematical functions to operate on this new number type. However, one of the
strengths of modern programming languages such is C++ is the potential for
generic programming [MS89]. This is the methodology by which software is
written so as to be independent of the underlying datatypes used. This style is
typified by the Standard Template Library which employs the C++ template
mechanism to define abstract datatypes and algorithms independently of the
types of their contents and arguments. In fact, there are now a number of
template based mathematical libraries for C++ that are generic [Vel98]. Fre-
quently this is used to enable programmers to write code that is independent of
information such as the machine representation of floating point numbers (e.g.
whether float or double is used.)

However, we can also exploit such libraries to write code that can make use
of more radical replacement of the underlying number type. The task now is to
implement this replacement class and ensure that it exports an interface similar
enough to that of the more usual number types that it can replace them. Because
our new class is defined algebraically (through d2 = 0) the implementation is in
fact very similar to the implementation of complex numbers as a class. In fact
we can now make a very general statement: computing derivatives of a wide
class of functions is no more difficult that computing those functions applied to
complex numbers.

We will consider examples in C++. For ease of exposition we will initially
make our underlying datatype float though we will return to this point later.
We now extend the float type by adding in the new elements implied by the
existence of d. Every element of our new class can be written in the form a+ bd
for real a and b. We call a the real part and b the infinitesimal part. We can
now define the class by

class Dual {
public:

float a; // Real part
float b; // Infinitesimal part
Dual(float a0,float b0 = 0.0f) : a(a0), b(b0) { }

};

For brevity of exposition we have chosen not to use accessor methods and instead
make the members of this class public.

Consider the summation of two objects of type Dual.

(a0 + b0d) + (a1 + b1d) = (a0 + a1) + (b0 + b1)d

Similarly the product of two Dual objects is given by:

(a0 + b0d)(a1 + b1d) = a0a1 + (a0b1 + a1b0)d

4



Using these expressions we can implement addition and multiplication via
operator overloading as follows:

Dual operator+(const Dual &x,const Dual &y) {
return Dual(x.a+y.a,x.b+y.b);

}
Dual operator*(const Dual &x,const Dual &y) {

return Dual(x.a*y.a,x.a*y.b+x.b*y.a);
}

We are now in a position to start computing derivatives. As an example we
consider the function f(x) = (x + 2)(x + 1). We implement this in generic form
as a polymorphic function:

template<class X> X f(X x) {
return (x+X(2.0f))*(x+X(1.0f));

}

An important point to note is that we have cast the constants in this expres-
sion to the template parameter type so that the arguments to the + operator
are of the same type. An alternative is to overload the operators so that they
can accept arguments of differing type.

We now define:

Dual d(0.0f,1.0f);

and finally we can compute the derivative of f(x) at x = 3, say, by computing

f(X(3.0f)+d)

and extracting the infinitesimal part of the result, in other words looking at the
b member of the value of this expression.

If we compile and run this example we should find that f returns

(3 + d + 2)(3 + d + 1) = (5 + d)(4 + d) = 20 + 9d

giving the derivative as 9. A more conventional path gives f ′(x) = (x + 2)1 +
1(x + 1) = 2x + 3 and this evaluated at x = 3 gives the identical result 9.

So now we can summarise the method: in order to compute the derivative
of a function in C++ we must make the code generic and evaluate the function
with d added to the argument. The derivative is given by the infinitesimal part
of the returned value.

So far we have only considered addition and multiplication. Subtraction
is straightforward but division is a little more subtle. Using the generalised
binomial expansion of (1 + x)−1 we find:

a0 + b0d

a1 + b1d
=

a0 + b0d

a1

1
1 + (b1/a1)d

=
a0 + b0d

a1
(1− (b1/a1)d + d2(. . .))

=
a0

a1
+

a1b0 − a0b1

a2
1

d

5



Note that division by any dual number of the form 0 + bd is not defined. This
will pose no problems for us.

It is straightforward now to generalise to transcendental functions. Any
differentiable function f defined over the real numbers can be extended to the
duals by

f(a + bd) = f(a) + bf ′(a)d

As an example we present the implementation of cos:

Dual cos(const Dual &x) {
return Dual(cos(x.a),-b*sin(x.a));

}

With these functions defined we are now in a position to differentiate a large
proportion of the differentiable code that is typically in use. In combination with
a suitably generic vector and matrix library we can automatically differentiate
vector and matrix expressions. We can even implement complex code such as
fluid dynamics simulation and determine how the output parameters depend on
an input parameter. (For a closely related example see [TMPS03]).

Note that d is similar to the infinitesimals introduced by Newton and Leibniz.
It also shares some similarities with the infinitesimals of non-standard analysis
[Rob74],[Ber92].

5 Partial Derivatives

So far we have illustrated how to differentiate with respect to a single variable.
The above method generalises to partial derivatives. Instead of introducing a
single variable d such that d2 = 0 we introduce a set of variables di with i ∈ I
an index set. We stipulate that the di commute with all real numbers (e.g.
adi = dia and a + di = di + a for all real a.) and that didj = 0 for all i, j ∈ I.
A general dual number of this type may now be written as x = a +

∑
i∈I bidi.

We can represent members of this dual number class as a pair consisting of the
real number a (the real part) and a vector of reals, (bi)i∈I (the infinitesimal
parts). The above implementation generalises naturally. We can now compute
partial derivatives by reading the coefficients of the di. For example, suppose
we have a function f mapping a pair of reals to a real and wish to compute
partial derivatives at (x, y). Then we compute f(x + d0, y + d1). The required
partial derivatives appear as the coeficients of d0 and d1.

f(x + d0, y + d1) = f(x, y) +
∂f

∂x
(x, y)d0 +

∂f

∂y
(x, y)d1

Note that when we evaluate partial derivatives we obtain a significant perfor-
mance gain over finite differencing. For example if we differentiate an expression
containing the sine function with respect to N variables we need only compute
the sine and cosine of the argument once each. When using finite differences
we require N +1 evaluations of the sine function, one for each evaluation of the
expression.

6



6 Second Derivatives and Higher

We now take a different approach to Jerrell [Jer89] to compute second derivatives
by a method similar to that used by the FADBAD library [BS96]. Let us return
to the single variable case as this is easier to consider.

Thus far we have illustrated dual numbers over the class float. We must
now generalise to duals defined over an arbitrary class:

template<class X>
class Dual {
public:

X a; // Real part
X b; // Infinitesimal part
Dual(X a0,X b0 = 0) : a(a0), b(b0) { }
static Dual<X> d() {

return Dual<X>(X(0),X(1));
}

};

We may now compute second derivatives by iterating the above method. If
we wish to find the second derivative of a function f we write a C++ function
g to compute the derivative of f in a generic manner and then use the same
method to compute the derivative of g. We can best illustrate with some sample
code:

template<class X>
X f(X x) {

return ... // Compute some function of x
}

//
// Compute f’(x)
//
X g(X x) {

return f(Dual<X>(x)+Dual<X>::d()).b;
}

//
// Compute f’’(x)=g’(x)
//
... = g(Dual<float>(x)+Dual<float>::d()).b;

7 Differentiable Rendering

Frequently in ditigal movie post-production we are faced with the problem of
inverse rendering: determining what input to a renderer will produce an output

7



that matches a given image. For example, as input to a 3D renderer we may
have a number of parameters (θ1, θ2, . . .). These parameters may range from
transformation parameters such as angle of rotation to shader parameters such
as the exponent in a Blinn-Phong shader. We can consider a renderer to be a
function

f : (θ1, θ2, . . .)→ (Ii,j,c)

where Ii,j,c represents the color of the c channel of the (i, j)-th pixel of the
rendered image. If Ji,j,c is the desired output then we can write a sum of
squares error term

e =
∑
i,j,c

(Ii,j,c − Ji,j,c)2

If the rendering code is written genericaly enough that some parameters may be
replaced by dual number objects then we may compute e as well as its derivative
with respect to those parameters. Armed with the derivative information we
may now use a black-box minimisation algorithm such as non-linear conjugate
gradients to efficiently derive input parameters that result in an image I that
best matches J .

More generally many problems in post-production can be solved by differ-
entiating or inverting a subsystem of a 3D renderer. For example part of a
ray-tracer takes as input a specification of a ray and returns the texture co-
ordinates in the textures with which the ray intersects. By implementing this
code generically we can automatically compute the derivative of the texture
coordinates with respect to the ray specification. This is what is required to
anti-alias texture mapping correctly and so automatic differentiation gives a
straightforward means of implementing ray tracing differentials [Ige99].

8 Photogrammetry and Match-Moving

In this paper we will concentrate on the subsystem that transforms and projects
3D points to 2D screen coordinates. This will allow us to invert this operation
to derive the 3D model that best fits a collection of projected 2D points. In
other words we will demonstrate a method for implementing photogrammetry
and match-moving. Our implementation was named Labrador.

Suppose we wish to reconstruct a set of 3-dimensional points Pi, i ∈ I, with
positions (pi). We have a set of images indexed by the set J in which some of
the Pi appear projected. For each image j we have a camera projection function
cj such that cj(pi) is the projection of the point Pi into the 2-dimensional screen
space associated with camera j. We have an index set R such that (i, j) ∈ R
if and only if the point Pi appears projected in image j. For each (i, j) in R
we have a 2D position zi,j at which the point Pi appears to be projected. In
other words zi,j = cj(pi) + ei,j where ei,j is the difference between actual and
observed projections.

Suppose that the x and y coordinates of ei,j are independent normally dis-
tributed variables whose components have variance σj . We would like to find

8



the positions of the points Pi such that the deviations of the ei,j are minimised
in the least squares sense. The maximum likelihood estimator of the positions
of the Pi is given by the pi that minimise this expression:

e =
∑

(i,j)∈R

e2
i,j =

∑
(i,j)∈R

(cj(pi)− zi,j)2/σ2
i

Using automatic differentiation we can find the derivatives of this expression
and so minimise it using a black-box minimiser.

But there are considerable generalisations we can make. In practice we may
have further information about the structure of the Pi, for example that some
of the Pi are coplanar, while the details of the cj may be unknown, for example
the cameras may have unknown focal length and lens distortion or may be at
an unknown position.

Our approach is as follows: users build an approximation to the scene that we
are reconstructing within Alias|Wavefront Maya. We allow them to use trans-
formations in the Maya scene graph to represent partially known information
in the scene. For example if an object in the scene is known to be a cuboid but
has unknown size then users can instantiate a cube object and scale it using a
Maya scale transform. The user then marks variables in the scene whose values
are unknown. In the cuboid example the user marks the three numbers defining
the unknown scalings of the cube. There may be many unknown parameters
marked in a scene: scalings, rotation angles, translations, camera focal lengths
and so on. We then reimplemented the subsystem of Maya that computes the
projections of points in this scene hierarchy in a generic way. We generically
compute the error e for this scene in terms of the marked parameters and min-
imise this function using a black-box minimisation routine. As discussed in the
next section we used a version of the Levenberg-Marquardt algorithm for min-
imisation as this is generally a good choice for nonlinear least-squares problems
[PFTV92].

9 Implementation Details

Labrador uses an active set variation of the Levenberg-Marquardt algorithm
[NW99],[PFTV92] suitable for bounded and unbounded minimisation. Rather
than approximate the Hessian (the matrix of second derivatives) of e using a
function of the Jacobian [PFTV92] we used automatic differentiation to obtain
the full Hessian. At each iteration we used the conjugate gradient algorithm
to solve the linear system involving Hessian. One slight difficulty is that the
matrix of coefficients of this linear system isn’t guaranteed to be positive definite
as needed by the conjugate gradient algorithm. To some extent this problem is
self-correcting because the Levenberg-Marquardt algorithm automatically adds
terms to this matrix that tend to make it positive definite if the algorithm fails to
descend towards a minimum. However, we also modified the conjugate-gradient
algorithm to stop iterating and return the result of iteration so far if it detected
a negative eigenvalue.

9



We considered sequences of live action images to be sets of independent
images. This allowed Labrador to carry out both photogrammetry and match-
moving. In fact, rather than compute match-moves from frame to frame in-
crementally we instead computed match-moves by minimising over all frames
simultaneously. This often resulted in Levenberg-Marquardt minimisations in
spaces of dimension greater than 10000. Labrador was able to work with such
minimisations.

We gave users significant freedom of expression to describe known informa-
tion. Any transformation parameters such as rotation angles or scalings could be
marked for solving. Labrador supports an arbitrary number of cameras placed
anywhere in the scene hierarchy and parameters for transforms above cameras
may be marked. Labrador will reconstruct animated articulated geometry and
even reconstruct cameras mounted on articulated geometry as with real camera
rigs. If some of the images represent a sequence over time then the user indi-
cates whether or not a parameter is to be considered animated or not. If it is
animated then Labrador treats the value at each time step as an independent
parameter for which it should solve.

Additionally Maya supports the connection of parameters in a scene by
means of symbolic expressions. We implemented an interpreter to evaluate a
subset of Maya’s expression language in a generic and thus differentiable man-
ner and allowed these expressions to enter into the expression for e. This meant
that modellers and match-movers could express constraints that are difficult
to express via transforms. For example users could use this facility to set the
expression for the height of one building to be the same expression as that for
the height of another building so that the buildings are constrained to have
the same height. Similarly two cameras can be constrained to have the same
unknown focal length or complex information about the relationships between
the members of a truss can be entered. Labrador regularly finds global minima
in the presence of complex scene graphs and expressions. (Compare with the
CONDOR system [Kas92].)

The vector (bi) described in Section 5 was represented sparsely. This allowed
us to compute and represent the Hessian sparsely and use the sparse conjugate
gradient method to solve for the iteration step. Exploiting sparsity is essential
to obtaining good performance. Consider computing the N2 second derivatives,
with respect to (x1, . . . , xN ), of

f =
L∑

i=1

f2
i

where each fi is a function of no more than M of the xi. Then the Hessian has
no more than LM2 non-zero entries. For match-moving problems this is usually
much less than N2.

(Our approach to automatic differentiation is known as forward mode dif-
ferentiation. Another approach to automatic differentiation is reverse mode
automatic differentiation [GC91]. Often this is better suited to problems with
large numbers of input variables. We also implemented this method but found

10



that we could achieve better performance by using the method described above
with a sparse representation for the duals. A sparse variation of reverse mode
differentiation may also be possible but this was not tried.)

10 Results and Discussion

Automatic differentiation has proved a highly effective method for computing
derivatives. In particular it has provided an efficient solution to the problems of
reconstruction of geometry and camera moves from film. Labrador was able to
solve for both structured and unstructured geometry and it replaced commercial
match-moving and photogrammetry software in-house entirely.

The most important point to note is that we were able to implement a highly
effective tool merely by enforcing the rule that the evaluation of e was imple-
mented generically allowing the use of a standard black-box minimiser. In other
words once the reusable library components were written then the solver was
no more complex to implement than the forward code that simply transforms
and projects points. What is more, we were able to do this by the full New-
ton method rather than the Gauss-Newton approximation, a task that is often
considered too complex to be implemented (see [TMHF00], Section 4.3). (Note
that we also tested the Gauss-Newton method and found that in some scenar-
ios it can perform better. Comparison between the two methods is a complex
topic.) Labrador was able to generalise much of the functionality of existing
photogrammetry tools such as Façade [DTM96] and replaced commercial tools
in-house. There are no other hidden components to Labrador’s solver. It con-
sists almost entirely of generic code to compute e and library code to optimise
generic functions.

Without a standard set of benchmarks it is difficult to give an idea of tim-
ings for Labrador. In production, scenes are built incrementally in Maya using
Labrador repeatedly to find the best local minimum using information entered
so far. Used in this way, with a single CPU on a 2.8GHz Xeon, the time for
Labrador to solve is an insignificant part of the workflow. In a scenario such as
solving for a 600 frame match-move determining 6 camera transform parame-
ters for each frame as well as approximately 100 parameters that don’t vary in
time (a minimisation in a 3700 dimensional space) Labrador might take 5− 45
minutes to solve. But this does not reflect real usage. In fact this example could
be speeded significantly by using every tenth frame to obtain a good approxima-
tion that is subsequently used to initiate a full solve. (Note, most commercial
match-moving tools will not use all frames simultaneously but instead typically
solve one frame at a time or solve using a small batch at a time. When using
Labrador in this way the time to solve is often significantly less than the time
to communicate the results back to Maya.)

One surprising fact emerged from this work. The space of possible solutions
is large, often having a dimensionality running into the thousands, and has a
complex topology due to the presence of parameters such as rotation angles.
But for real photogrammetry and match-moving problems that appeared dur-

11



ing production there is frequently a large ‘basin’ around the global minimum.
Within this basin it was possible to start the Levenberg-Marquardt algorithm
and arrive at the unique global minimum. The specification of information
through the use of transforms and expressions removes many potential sources
of ambiguity. In rare cases a local minimum was discovered that was not the
global minimum. It was often a configuration that was approximately related
to the global minimum by a simple symmetry operation, for example a build-
ing being inverted with respect to the axis pointing directly forward from the
camera in which it was projected. (Cf. the ‘bas-relief’ ambiguity [BKY99].)
In these cases it was an easy process to apply that operation and then restart
the search. It is also worth noting that our minimiser was conservative in the
sense that it would never take a step worsening the objective function. This
was useful in ensuring that the solver never left the basin to become lost.

11 Acknowledgements

Thanks to JP Lewis and Doug Moore for their contributions to the development
of Labrador.

References

[Ber92] Martin Berz. Automatic differentiation as nonarchimedean analysis.
In Computer Arithmetic and Enclosure Methods, Amsterdam, 1992.
Elsevier Science Publishers.

[BKY99] Peter N. Belhumeur, David J. Kriegman, and Alan L. Yuille. The
bas-relief ambiguity. Int. J. Comput. Vision, 35(1):33–44, 1999.

[BS96] Claus Bendtsen and Ole Stauning. Fadbad, a flexi-
ble C++ package for automatic differentiation, 1996.
http://www.imm.dtu.dk/fadbad.

[BW98] David Baraff and Andrew Witkin. Large steps in cloth simulation.
In Computer Graphics Proceedings, Annual Conference Series, pages
43–54. SIGGRAPH, 1998.

[Cli73] W. K. Clifford. Preliminary sketch of bi-quaternions. Proceedings
of London Mathematical Society, 4:381–395, 1873.

[DTM96] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling
and rendering architecture from photographs: A hybrid geometry-
and image-based approach. Computer Graphics, 30(Annual Confer-
ence Series):11–20, 1996.

[Duf02] Thomas Duff. Motion blurring implicit surfaces, November 2002.
US patent 6,483,514.

12



[GC91] Andreas Griewank and George F. Corliss, editors. Automatic Differ-
entiation of Algorithms: Theory, Implementation, and Application.
SIAM, Philadelphia, Penn., 1991.

[Gle97] Michael Gleicher. Motion editing with spacetime constraints. In
Proceedings of the 1997 symposium on Interactive 3D graphics, pages
139–ff. ACM Press, 1997.

[HS81] Berthold K. P. Horn and Brian G. Schunck. Determining optical
flow. Artificial Intelligence, 17(1-3):185–203, August 1981.

[HS98] Wolfgang Heidrich and Hans-Peter Seidel. Ray-tracing procedural
displacement shaders. In Graphics Interface, pages 8–16, 1998.

[Ige99] Homan Igehy. Tracing ray differential. In Alyn Rockwood, editor,
Siggraph 1999, Computer Graphics Proceedings, pages 179–186, Los
Angeles, 1999. Addison Wesley Longman.

[Jer89] M. E. Jerrell. Function minimization and automatic differentia-
tion using C++. In Conference proceedings on Object-oriented pro-
gramming systems, languages and applications, pages 169–173. ACM
Press, 1989.

[Kap03] Wilfred Kaplan. Advanced Calculus. Addison-Wesley, 2003.

[Kas92] Michael Kass. Condor: constraint-based dataflow. In Proceedings
of the 19th annual conference on Computer graphics and interactive
techniques, pages 321–330. ACM Press, 1992.

[MH92] Don Mitchell and Pat Hanrahan. Illumination from curved reflec-
tors. Computer Graphics, 26(2):283–291, 1992.

[MS89] Musser and Stepanov. Generic programming. In ISSAC: Proceedings
of the ACM SIGSAM International Symposium on Symbolic and Al-
gebraic Computation (formerly SYMSAM, SYMSAC, EUROSAM,
EUROCAL) (also sometimes in cooperation with the Symbolic and
Algebraic Manipulation Groupe in Europe (SAME)), 1989.

[NW99] J. Nocedal and S. J. Wright. Numerical Optimization. Springer,
1999.

[PFTV92] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes: The Art of Scientific
Computing. Cambridge University Press, Cambridge (UK) and New
York, 2nd edition, 1992.

[Rob74] A. Robinson. Non-Standard Analysis. North-Holland, 1974.

13



[TMHF00] Bill Triggs, Philip McLauchlan, Richard Hartley, and Andrew
Fitzgibbon. Bundle adjustment – A modern synthesis. In W. Triggs,
A. Zisserman, and R. Szeliski, editors, Vision Algorithms: Theory
and Practice, LNCS, pages 298–375. Springer Verlag, 2000.

[TMPS03] Adrien Treuille, Antoine McNamara, Zoran Popovic, and Jos Stam.
Keyframe control of smoke simulations. ACM Transactions on
Graphics (TOG), 22(3):716–723, 2003.

[Vel98] Todd L. Veldhuizen. Arrays in Blitz++. In Proceedings of the
2nd International Scientific Computing in Object-Oriented Parallel
Environments (ISCOPE’98), Berlin, Heidelberg, New York, Tokyo,
1998. Springer-Verlag.

14


