
Self-Adjusting Top Trees∗

Robert E. Tarjan† Renato F. Werneck‡

Abstract

The dynamic trees problem is that of maintaining a forest

that changes over time through edge insertions and deletions.

We can associate data with vertices or edges, and manipulate

this data individually or in bulk, with operations that deal

with whole paths or trees. Efficient solutions to this problem

have numerous applications, particularly in algorithms for

network flows and dynamic graphs in general. Several

data structures capable of logarithmic-time dynamic tree

operations have been proposed. The first was Sleator and

Tarjan’s ST-tree [16, 17], which represents a partition of

the tree into paths. Although reasonably fast in practice,

adapting ST-trees to different applications is nontrivial.

Topology trees [9], top trees [3], and RC-trees [1] are based

on tree contractions: they progressively combine vertices or

edges to obtain a hierarchical representation of the tree.

This approach is more flexible in theory, but all known

implementations assume the trees have bounded degree;

arbitrary trees are supported only after ternarization. We

show how these two approaches can be combined (with very

little overhead) to produce a data structure that is as generic

as any other, very easy to adapt, and as practical as ST-

trees.

1 Introduction

Consider the following problem. We are given an n-
vertex forest of rooted trees with costs on edges. Its
structure can be modified by two basic operations:
link(v, w, c) adds an edge with cost c between a root v

and a vertex w in a different component; cut(v) removes
the edge between v and its parent. At any time, we want
to be able to find, for any vertex v, its parent p(v) and
the cost of the edge (v, p(v)). All these operations take
constant time with an obvious implementation: for each
vertex v, store a pointer to its parent and the cost of
the edge between them.

Now suppose we also want to find the cheapest edge
on the path from a vertex v to the root, or to add a

∗Research at Princeton University partially supported by the

Aladdin project, NSF Grant no. CCR-9626862.
†Department of Computer Science, Princeton University, and

HP Labs. E-mail: ret@cs.princeton.edu.
‡Department of Computer Science, Princeton University. E-

mail: rwerneck@cs.princeton.edu.

constant c to the cost of every edge on this path. The
obvious implementation can support these operations,
but in time proportional to the length of the path, which
could be Θ(n).

This specific problem appears in the context of
network flow algorithms [16]. We are interested in its
generalized version: a data structure that supports in
O(log n) time queries and updates related to vertices
and edges individually, and to entire trees or paths.
We call this the dynamic trees problem. Other typical
operations include adding a certain value to all vertices
in a tree, or asking for the sum of all edge weights
on a path. Operations such as these are needed
in several solutions to the maximum flow problem
[2, 10, 11, 19] and related algorithms [16]. They are
also used in algorithms that maintain properties of
dynamic graphs, such as minimum spanning trees and
connectivity [3, 8, 12, 14]. Applications for maintaining
dynamic expression trees have also been reported [6, 9].

The first data structure to support every operation
in the example application in O(log n) time was Sleator
and Tarjan’s ST-tree [16] (also known as link-cut tree).
This structure partitions the tree into vertex-disjoint
paths and represents each one by a binary tree in which
the original vertices appear in symmetric order. The bi-
nary trees are then glued together according to how the
paths are connected (the root of each binary tree be-
comes a middle child of a node in another binary tree).
For the algorithm to be efficient, this hierarchy must
be balanced. But making each binary tree balanced
is not enough—the total height of the hierarchy would
be O(log2 n). Sleator and Tarjan have shown that using
globally biased search trees [5] one does achieve O(log n)
worst-case time per operation. They later showed [17]
how splaying greatly simplifies the data structure while
still achieving the O(log n) bound (now amortized).

ST-trees can be adapted to solve other problems
beyond our example, but this requires an understand-
ing of their inner workings. In particular, Goldberg
et al. [10] show how subtree-related operations (such
as adding a value to all vertices in a tree) can be ac-
complished with an implicit ternarization of the original
tree, which transforms high-degree vertices into chains
of constant-degree ones. The data structure becomes
more complicated, however.



A simpler and more elegant way to handle subtree-
related operations stems from the observation that a
tree can be represented by an Euler tour. Representing
tours as standard balanced binary trees is the basis
of ET-trees, proposed by Henzinger and King [12],
and later simplified by Tarjan [19]. Unfortunately,
these data structures cannot deal with path-related
operations (such as the ones suggested in our example),
so their applications are somewhat limited.

A third class of data structures is based on tree

contractions. These structures use two operations pro-
posed by Miller and Reif [15] in the context of parallel
algorithms: rake (which removes leaves) and compress

(which removes vertices of degree two). Each opera-
tion replaces the original elements (vertices and edges)
by a cluster that aggregates information about them.
The entire tree is represented by a hierarchy of clusters,
which is itself a tree.

In Frederickson’s topology trees [7, 9], the contrac-
tion works in rounds, each with a maximal set of inde-
pendent rakes and compresses. Since the tree shrinks
by a constant factor in each round, there are at most
O(log n) rounds. More importantly, the contraction
can be updated after a link or cut in O(log n) worst-
case time. However, the data structure is somewhat
involved, since it must maintain one tree for each level
as well as the connections between these trees. In prac-
tical applications, this makes it twice as slow as ST-
trees [9]. Recently, Acar et al. proposed RC-trees [1],
a randomized variant that is conceptually simpler and
runs in O(log n) expected time per operation. Both data
structures view clusters as vertices, which, for technical
reasons, means that the O(log n) bound only applies to
trees of bounded degree. Arbitrary trees can be han-
dled by ternarization, but this increases the tree size
and adds an extra level of complexity.

An alternative is top trees, proposed by Alstrup et
al. [3, 4]. By considering clusters to be edges (instead of
vertices), they avoid the need for explicit ternarization.
In addition, they provide an interface for handling
data independently of the order in which rakes and
compresses are performed, so one can adapt this data
structure to different applications without modifying its
inner workings (a similar interface was also defined for
RC-trees). This not only simplifies the implementation
of existing algorithms for various applications, but also
makes it easier to devise new ones. In [3], however, the
suggested implementation of top trees is as a layer on
top of topology trees, hardly a practical solution.1

1Holm and de Lichtenberg [13] did suggest a direct implemen-

tation of top trees, but they later found their run-time analysis to

be flawed (personal communication). Even if the bound is correct,
the implementation is far from trivial.

In a very broad sense, all these data structures have
the same ultimate goal: to map an arbitrary tree into
a balanced one. ET-trees do it in a very elegant, direct
way, but they cannot deal with path-related operations.
ST-trees represent individual paths as binary trees,
which are then glued together to represent the whole
tree. This approach is ideal for path-related operations,
but handling subtree queries requires ternarization.
Topology trees and RC-trees represent not the tree
itself, but the steps necessary to contract it. This can
be viewed as a multi-level decomposition of the original
tree, which lends itself naturally to applications related
to dynamic graphs. These two data structures, however,
can only deal with trees of bounded degree. Top trees
eliminate this constraint and have the most natural
interface, but they achieve this by adding an extra layer
to topology trees that merely hides the ternarization.
Devising a data structure that is at the same time
generic, flexible, and practical has been an elusive goal.

This paper achieves this goal. We show how the
principles behind Sleator and Tarjan’s ST-trees can be
used to implement top trees. A partition of the original
free tree into edge-disjoint paths can be directly mapped
onto a series of rakes and compresses, which shows that
partitions and contractions are essentially equivalent.
The end result is a data structure that is almost as
streamlined as the original ST-trees, but as flexible as
top trees (with the extra ability to handle ordered edges
around each vertex).

The paper is organized as follows. Section 2 for-
malizes the problem and outlines the top tree interface.
Our representation is described in Section 3. Section 4
shows how queries and updates are handled. Section 5
establishes the O(log n) amortized time per operation.
Final remarks are made in Section 6.

2 Top Trees

Consider a collection of free (unrooted, undirected) trees
whose edges are organized in circular order around each
vertex. The order can be arbitrary or given by the
application. We interpret compress and rake as follows.
A degree-two vertex v is compressed if the two edges
incident to it, (u, v) and (v, w), are replaced by a single
edge (u,w). A degree-one vertex v with neighbor x is
raked if the edge (v, x) and its successor (w, x) around
x are replaced by a single edge, also with endpoints w

and x. (We also say that the edge (v, x) is raked onto
(w, x).) See Figure 1. We note that our interpretation
differs slightly from the one proposed by Alstrup et al.,
which assumes that there is no order among the edges
incident to the same vertex.

A top tree is a binary tree that embodies a con-
traction of a tree into a single edge via a sequence of



rake(v)

compress(v)

w

x

w

x

v

wuw
v

u

Figure 1: Basic operations.

rake and compress operations. Rakes and compresses
are viewed as manipulating clusters. Each leaf of the
top tree is a base cluster representing an original edge,
and each internal node is either a rake cluster or a com-
press cluster. A node aggregates information pertaining
to all descendants; in particular, the entire original tree
is represented at the root of the top tree. When an edge
is deleted or inserted, there is no need to recompute a
new contraction from scratch: it is enough to update the
affected top trees to make them consistent with the new
underlying forest. Since changes to the leaves propagate
to the root, only sequences of rakes and compresses that
produce balanced top trees can provide an O(log n) so-
lution to the dynamic trees problem.

Alstrup et al. [3] show that top trees can maintain
a variety of properties efficiently (such as shortest
paths between any two vertices, tree center, and tree
diameter) as long as the appropriate information is kept
in each cluster. Quite sensibly, they suggest making the
structural changes independent of the data. Regardless
of the order of rakes and compresses, the data structure
just calls four user-defined functions to update values
appropriately: join, split, create, and destroy.
The first two are called when a rake or compress is
performed or undone; the last two are the equivalents
for base clusters. All four functions deal only with root
clusters.

For example, to compute the sum of the costs of
all edges in a tree, we store a single value in each
cluster. create initializes this value as the cost of the
corresponding edge. join stores in the new cluster the
sum of the values in the children. Because children
always keep their original values, split need not do
anything. destroy also does nothing.

The user does not call any of these four functions
directly. She is limited to three basic operations:
link(v, w) adds an edge to the forest; cut(v, w) removes
an edge; and expose(v, w) ensures that v and w are
endpoints of the root cluster, the only cluster the user
can manipulate directly. Our goal is to implement these
three operations efficiently.

3 Representation

To represent a free tree, we first pick a degree-one vertex
as the root and direct all edges towards it. We call
this (a directed tree whose root has degree one) a unit

tree. We then partition the tree into non-crossing edge-
disjoint paths that begin at a leaf and end at another
path. The only exception is the root path (or exposed

path), which ends at the root. (A complete example
illustrating this and other aspects of the representation
is given in the appendix.)

Our goal is to create a cluster to represent the
whole unit tree. Any internal vertex v of the root path
p has exactly two neighbors on the path and zero or
more outer neighbors. Since edges around a vertex are
arranged in circular order, the outer neighbors of v are
divided by p into two (possibly empty) subsequences
(see Figure 2). Each element of these subsequences is a
unit tree rooted at v, and therefore can be recursively
represented by a single cluster. Clusters in the same
subsequence are progressively paired up to create a rake

tree: its root represents the entire subsequence, leaves
represent unit trees, and each internal node is the rake
of the left onto the right child.

GE
CA

HF
DB

z
yx

wv
u

Figure 2: A unit tree rooted at z.

We are now left with a path containing some k

base clusters and at most 2k−2 incident outer clusters,
each representing a subtree (empty subtrees will have
no associated cluster). Ignoring the outer clusters, we
could represent the path by a compress tree, a binary
tree whose leaves are base clusters, and whose internal
nodes represent compresses of adjacent clusters. Each
node in the compress tree represents a subpath of the
original path (leaves represent original edges, internal
nodes represent nontrivial paths).

We deal with the outer clusters by raking them onto
the root path. This is done as late as possible: an
outer cluster incident to vertex v is raked just before
v is compressed. In the data structure, it will become
a foster child of the node representing compress(v) (the
two original children are proper children). The left
foster child is raked onto the proper left child, and
the right foster child onto the proper right child. The
resulting clusters are then compressed.

Figure 3 is a possible representation of the unit tree
in Figure 2. Shaded nodes belong to the compress tree.



yzG

xyEwxF

NxH

NyC

vwAuvB

NvD

Nw

Figure 3: A top tree corresponding to Figure 2.

Internal nodes are labeled after the vertices compressed
(e.g., Ny represents compress(y)). Each internal node
has up to four children and represents at most three
clusters: two rakes (one for each foster child) and one
compress (of the clusters generated by the rakes). Foster
children, shown in white, are actually binary (rake) trees
whose leaves represent unit trees.

Summing up, we represent a unit tree as follows:

• Recursively compute clusters to represent each unit
tree incident to the root path p.

• Create rake trees to represent each contiguous
sequence of unit trees incident to p.

• Create a binary tree of compress nodes to represent
the root path, with the rake trees appearing as
foster children.

This method works for the entire tree, which is itself a
unit tree. The end result is a hierarchy of alternating
rake and compress trees.

Order within binary trees. We have seen that a
rake tree represents a contiguous sequence of clusters
in symmetric order. The leaves of a compress tree
represent the edges of a path, and in principle could also
appear in symmetric order. To handle path reversals
efficiently, however, we use a more relaxed condition.
Given a node representing compress(v) with endpoints
u and w, one of its subtrees must represent the path
u · · · v, and the other v · · ·w. Left and right subtrees can
be interchanged freely.2 (The “correct” order among
children can be retrieved from the cluster endpoints.)
ST-trees use a similar technique to support the evert

(change root) operation.

Handles. Top tree operations (link, cut, and expose)
are defined in terms of vertices, but the top tree itself is
a hierarchy of clusters and nodes, which can be viewed
as edges or paths—not vertices. Therefore, we associate
to each vertex v a handle Nv. If the degree of v is at
least two, Nv is the node representing compress(v). If
the degree is one, Nv is the topmost non-rake node that

2The example in the appendix illustrates this.

has v as an endpoint (this is either the root of the entire
tree or a leaf of a rake tree). Isolated vertices have no
handle. A node may be the handle of as many as three
vertices; in Figure 3, for example, the root (Nw) is the
handle of u, w, and z. The map from vertices to handles
is maintained explicitly.

4 Updates

Before operating on a path, the top tree interface man-
dates that we first expose it, i.e., make it represented
at the root node. The representation described in Sec-
tion 3 requires both endpoints of the root path to have
degree one. To handle an arbitrary path v · · ·w, we first
pick a root path that contains v · · ·w as a subpath, then
we temporarily convert up to two compress nodes into
rake nodes. We call the first step a soft expose of ver-
tices v and w, and the second a hard expose of the path
v · · ·w. We discuss each in turn, in Sections 4.1 and 4.2.
Cuts and links are discussed in Sections 4.3 and 4.4, and
additional implementation issues in Section 4.5.

4.1 Soft Expose. The outcome of soft expose(v, w)
depends on how v and w relate. If the vertices are
isolated, nothing is done. If v = w or v and w

are in different components, Nv (v’s handle) and Nw

(w’s handle) are simply brought to the root of their
components. When v and w are different vertices in the
same component, soft expose(v, w) ensures that cluster
vw (representing the path v · · ·w) is close to the root of
the top tree. It works by first making Nw the root, then
bringing Nv as close to the root as possible (preserving
Nw). When both v and w have degree two or more,
all three nodes (Nw, Nv, and vw) are different, and the
outcome is the one depicted in Figure 4. In degenerate
cases, we may have Nw = Nv or Nv = vw (or both). To
simplify hard expose, we require both Nv and vw to be
right children (unless they coincide with the root Nw).

D

B

C

A wzD

vwBuvA

NvC

Nw
z

w
v

u

Figure 4: Configuration after soft expose(v, w).

The soft expose operation uses the same basic tools
as the amortized version of ST-trees [17]: splay and
splice.

Splaying. Splaying [17] is a heuristic for rebalancing
binary trees using rotations. After a node x is accessed,



it is rotated up to the root. The precise nature of
each rotation depends on the relative positions of x,
its current parent p, and its current grandparent g. If
x and p are both right (or both left) children (zig-zig
case), we first rotate edge (p, g), then (x, p). If the edges
alternate (zig-zag case) we rotate (x, p) first, then (x, g).
When p is the root (zig case), we just rotate (p, x). In
our case, rotations (and splaying) happen only within
individual rake or compress trees. We therefore perform
guarded splays, which stop when x becomes the child
of a reference node (the guard). Ordinary splays are
guarded by null.

Figure 5 shows a rotation within a compress tree. A
key observation is that foster children are not affected:
they always keep the same parents. Rotations in rake
trees are similar (with no foster children). Splaying is
performed for balancing purposes only: it just changes
the order in which different moves of the same type
occur, preserving the original partition into paths.

rotate-left

rotate-right

wzDvwC

NwBuvA

Nv

wzD

vwBuvA

NvC

Nw

Figure 5: Rotation in compress trees.

Splaying requires the left and right children of all
nodes visited to appear in a consistent (symmetric)
order. Before splaying on a node N , we must therefore
rectify all compress nodes in the path from N to the
root of its top tree (rake nodes always have the correct
order). If a node X has parent Ny and grandparent Nz,
then X, Ny, and Nz must form a zig-zag if and only
if the endpoints of X are y and z. We ensure this by
flipping the children of Ny appropriately. Rectification
also guarantees that every compress node it visits has
the subpath that is farthest from the root represented in
its left child. Rectification is performed in a top-down
fashion. To preserve the circular order when proper
children are flipped, we flip the foster children as well.

Splice. The operation that changes the partition of the
original tree into paths is splice. A vertex v that is
internal to a path divides this path into two segments.
Splice replaces the segment that is farthest from the root
with one of the outside paths incident to v. In Figure 6,
x · · · v is replaced by y · · · v.

Figure 7 shows a possible configuration of the
corresponding top tree (circles represent internal nodes
of rake trees). The original proper children of Nv (v’s
handle) are vx and vz, representing x · · · v and v · · · z.

C

B

A

C

B

A

splice(y)

z
v

y

x
z

v

y

x

Figure 6: Splice: y · · · v · · · z replaces x · · · v · · · z as the
exposed path.

We shall see that splices only occur after a series of local
splays (within compress and rake trees). Nv will be the
root of a compress tree, and there will be at most two
rake nodes between vy and Nv. Splice makes vy the left
child of Nv and incorporates the former left child (vx)
into a rake tree, where it appears between A and B as
required by the circular order.

splice(y) vzC

Bvx

ζA

vyε

Nv

Cvy

γB

vzβvxA

Nv

Figure 7: Splice: Top trees corresponding to Figure 6.

Figures 6 and 7 represent only the most generic out
of several possible cases for splice. The precise outcome
depends on which foster child contains vy (the subpath
to be exposed) and on whether some of the rake subtrees
(A, B, or C) are absent. We must always replace the
left child of Nv (which represents the subpath that is
farthest from the root) while ensuring that the circular
order of the up to six relevant subtrees rooted at v

(denoted by A, vx, B, vy, C, and vz in Figure 7) is
preserved.

Exposing the target. Now that we have the necessary
building blocks, we return to the implementation of
soft expose(v, w). Its first step is to expose the target
vertex w, making its handle the root node.3 The
function starts from Nw itself, and works in three passes:

1. (Local Splay) Splay within each compress and rake
subtree in the path from Nw to the root.

2. (Splice) Perform a series of splices from Nw to the
root, making Nw part of the topmost compress
subtree.

3. (Global Splay) Splay on Nw, making it the root of
the entire tree.

3We refer to w as the “target” for convenience; the path v · · ·w

is actually undirected.



The last two passes are straightforward, so we only
discuss the first in detail. It is divided into several
subpasses, each starting from a different compress tree.
Let N be a node of this tree (initially, N = Nw). Splay
on it, making N the root of its compress tree and a
leaf of a rake tree. If the rake tree contains other nodes
besides N , splay on N ’s parent, P , within the rake tree.
If N ends up with a new parent P ′, splay on P ′ with P

as a guard. This concludes the subpass.
The left of Figure 7 shows a possible configuration

after a subpass associated with node vy. It becomes
the root of a compress tree (not shown), and between
itself and the closest compress ancestor (Nv), there are
at most two rake nodes (γ and β). In fact, we splay
twice on the rake tree precisely to divide it into three
subsequences: B, vy, and C. An alternative is to
perform a special “splaying split” of the rake tree, which
is similar to splaying on vy directly.

Once the subpass is concluded, we advance to the
first compress ancestor of N and repeat the procedure
there. We stop upon reaching the root of the entire tree.

Exposing the source. Now consider how to expose
the source v. At this point, Nw will be the root. If v is
an endpoint of Nw or if Nw represents compress(v), we
are done: Nw is v’s handle as well. Otherwise, we must
bring v’s handle (Nv) as close to the root as possible.

The exact procedure depends on the degree of w. If
it is one, we apply to Nv the same three-pass procedure
applied to Nw; this makes Nv the root, with w as one
of its endpoints (Nv and Nw coincide). If w has degree
two or more, then Nw will represent compress(w). To
expose v, we apply to Nv a procedure similar to that
applied to Nw, but with all splays guarded by Nw. This
ensures that no node will replace Nw at the root, so
either Nv will end up as Nw’s child (when v has degree
at least two) or v will become an endpoint of Nw (and
Nw = Nv will be the root).

To follow the specification of soft expose, we may
need to flip the children of Nw and Nv. If Nv 6= Nw,
Nv must be Nw’s right child; if the node representing
v · · ·w is different from Nv, it must be its right child.
If v and w turn out to be in different components, the
procedure above will end up exposing Nv as if it were
the target, as required by the specification.

4.2 Hard Expose. In general, soft expose(v, w) does
not make v and w the endpoints of the root node. In-
stead, as Figure 4 shows, the root node will represent
some path u · · · z, with vw as the rightmost grandchild.
To fix this, the hard expose operation temporarily con-
verts to rake the (at most two) compress ancestors of
vw. In the figure, Nv and Nw would be affected. Before

another pair of vertices is exposed, these modifications
must be undone to bring the tree back to its “normal-
ized” form.

4.3 Cuts. To cut an edge (v, w), we first execute
soft expose(v, w), making Nw the root. As Figure 8
shows, in the general case (when both v and w have
degree at least two) Nw’s right child will be Nv, and Nv’s
right child will be the base node representing (v, w).

cut(v,w)

vyB’uvA

Nv

wxC’wzD

Nw

vwBuvA

NvCwzD

Nw

Figure 8: Cutting edge (v, w).

We must destroy the base node and reorganize the
remaining nodes into two valid top trees. In the original
top tree, Nw represents some unit tree with root path
u · · · z. The right subtree represents a unit tree rooted
at w with (v, w) as the topmost edge. If we remove
the link between Nv and Nw, Nw will be the root of
a tree containing only the vertices in w’s component.
Similarly, if we remove the right child of Nv, only
vertices in v’s component will remain.

In both cases, the original right child must be
replaced. We detail only how to process Nw; the case
of Nv is similar. To preserve the circular order, the
replacement must be either the immediate successor
of the edge removed (the leftmost leaf of the left
foster subtree of Nw) or the immediate predecessor (the
rightmost leaf of the right foster subtree of Nw). To
extract the appropriate leaf, we simply splay on its
parent. If Nw has no foster child, it is deleted and its
left child becomes the new root.

4.4 Links To insert an edge (v, w) as the successor of
(a, v) around v and of (b, w) around w, we first perform
soft expose(a, v) and soft expose(b, w).4 If all vertices
have degree greater than one, we will have the two top
trees shown on the left of Figure 9. To link them, we do
the opposite of cut: we first replace the right child of Nv

with vw, making the old right child (Na) the rightmost
leaf of the right foster subtree of Nv; then we do the
same for Nw, making Nv its new right child.

We follow similar procedures when v or w have
degree zero or one. In particular, when v has degree
one, it is an endpoint of Nv; to add (v, w) to the tree,

4a · · · v and b · · ·w can also be arbitrary paths.



link(v,w)

vw

NaB

βuvA

Nv

NbD

αxwC

Nw

NaBuvA

Nv

NbDxwC

Nw

Figure 9: Linking v and w, general case.

we create a new compress node and make the old Nv

and the base node representing (v, w) its children. A
new compress node is also necessary when w has degree
one.

4.5 Implementation Issues

Handling data. So far, we have discussed only struc-
tural changes to the top trees. To update the values in
each cluster, we use the user-defined functions create,
destroy, join, and split. Rotations and splices can be
easily expressed in terms of a series of splits and joins.
Since the top tree is modified in a bottom-up fashion,
these functions cannot be called as we go (recall that
they can only be applied to root clusters). Instead, we
first just mark all affected clusters, then split and de-

stroy them in a top-down fashion. Only then do we
perform all structural modifications. A simple recur-
sive function unmarks all clusters and calls create and
join in a bottom-up fashion.

Data on vertices. Since top tree clusters correspond
to edges, representing edge-related information is triv-
ial. In many applications, however, we must associate
data with vertices instead. Alstrup et al. [3] suggest
attaching to each vertex v a special edge (a label) to
store vertex-related data; one of its endpoints is v, and
the other a dummy vertex with no other incident edge.
Although this approach is generic, adding extra edges
is an undesirable overhead. For most applications, it is
enough to keep the data associated with the vertices in
a separate array to which the internal functions (join,
split, create, and destroy) have access. Vertex in-
formation would be explicit for exposed vertices (i.e.,
those that are isolated or endpoints of root clusters),
and implicit for internal ones; therefore, only the values
of exposed vertices could be accessed directly.

Suppose, for example, that we want to maintain
the total weight of the vertices in a tree. The auxiliary
array keeps individual weights, while each cluster stores
a single value w corresponding to the total weight of
the subtree it represents. create initializes this value
as the sum of the weights of its endpoints, while join

sets it to the sum of the values in its children minus
the weight of the disappearing vertex (to avoid double-
counting).

Non-local search. Alstrup et al. [3] observed that cer-
tain applications (such as maintaining the tree median)
require performing a binary search within the top tree
to find an edge with some specific property. According
to the top tree interface, however, the user should not be
required to traverse the tree directly. Instead, the au-
thors propose a routine that gradually transforms the
original top tree into another, with the target edge rep-
resented at the root. A fifth user-defined internal func-
tion, select, is used to guide this construction. The
total running time is proportional to the original depth
of the base node representing the target edge. As soon
as the desired query is completed, the original tree is
restored. This operation can be applied here, as long
as it is followed by a call to expose(v, w), necessary to
amortize its cost appropriately.

Roots. The example application we presented in the
introduction assumes the trees are rooted, whereas top
trees deal with unrooted trees. It is not hard to see
that these two variants are essentially equivalent. A
data structure that deals primarily with rooted trees
can deal with unrooted trees as long as it supports
evert, an operation to change the root. This is the
case for both ST-trees and topology trees. RC-trees
and top trees, although implicitly rooting the tree, have
interfaces that assume that the underlying tree is not
rooted. To support rooted trees, we add to each cluster
the label of the root of the tree that contains it; this
value (as any other) is updated by the internal top tree
operations.

Nodes and clusters. As described, our representation
does not implement top trees directly. We have nodes
with up to four children, whereas top trees are binary.
For a direct implementation, it suffices to replace each
compress node by the three corresponding clusters (one
compress, two rakes). The splaying procedure must
then be modified to account for the fact that compress
trees now have interspersed rake nodes.

5 Analysis

The run-time analysis of our algorithm does not con-
sider the top tree itself, but an equivalent phantom tree.
In the top tree, compress nodes have up to four chil-
dren; in the phantom tree, up to three (left, middle,
and right). To convert a four-child top tree node to a
phantom tree node, we create an articulation node (the
new middle child) and make it the parent of the original



foster children. The articulation node is inserted only
when there are two foster children. While a tree with
n vertices may be represented by top trees of varying
sizes, phantom trees will have exactly n − 1 nodes; this
greatly simplifies the analysis. Phantom trees are used
in the analysis only; they need not be implemented.

We extend Sleator and Tarjan’s analysis of ST-
trees [17]. The rank of a node N is defined as r(N) =
log s(N), where s(N), the size of N , is the number
of leaves descending from N . (Note that the rank is
at most log n.) The potential of the phantom tree is
defined as q times the sum of the ranks of all nodes,
where q is a constant to be chosen later. The amortized

cost of the i-th operation in a sequence is defined as
ai = ci + φi+1 − φi, where ci is the actual cost of the
operation and φi and φi+1 the potentials before and
after it is performed. A bound on the total amortized
time translates into a bound on the actual time [18].

In general, the operations we perform take an active

node and move it upwards in the tree (the active node
changes during splice). Each basic operation (rotation,
double rotation, or splice) deals with a constant number
of nodes, and therefore takes constant time. We define
the actual cost of the i-th operation (ci) as the amount
by which the depth of the active node is reduced.

Rotations within rake and compress trees follow
Sleator and Tarjan’s analysis [17]. The amortized time
for zig-zig or zig-zag on a node N is 3q(r′(N) − r(N)),
where r(N) and r′(N) denote the rank of N before and
after the operation. A zig move has 3q(r′(N)−r(N))+1
amortized cost.5 As for splices, Figure 10 shows how
they work on phantom trees: just as in Figure 7, with
articulation nodes (α and δ) added where necessary.
The active node is vy before the operation, and Nv after.

splice(y)

vz

Bvx

ζA

Cε

δvy

Nv

vz

Cvy

γB

βA

αvx

Nv

Figure 10: Splicing on the phantom tree corresponding
to the tree on Figure 7.

Lemma 5.1. The amortized cost of a splice is at most

3q(r′(N ′)−r(N))+4, where N is the active node before

the operation, and N ′ the one after.

5In Sleator and Tarjan’s analysis of ST-trees, q = 2.

Proof. The actual cost of the operation is at most 4,
an upper bound on the amount by which the depth of
the active node is reduced (see Figure 10). The only
nodes whose ranks change are those labeled with Greek
letters in the figure. All three affected nodes on the
left are ancestors of the original active node N = vy,
so their combined rank is at least 3r(N); the affected
nodes on the right are all descendants of the final active
node N ′ = Nv, which means their combined rank is at
most 3r′(N ′). The amortized cost a of the operation is

a = c + φ′ − φ ≤ 4 + q(3r′(N ′)) − q(3r(N)),

as claimed. A similar analysis holds if there are fewer
than three nodes between N and N ′. 2

We now bound the amortized cost of
soft expose(v, w). It is enough to bound the time
to expose the target vertex w; the same bound applies
to the source v. We analyze each pass (local splays,
splices, and global splay) in turn.

If k is the number of compress trees in the path
from Nw to the root of the top tree, we will splay within
k compress trees and up to k − 1 rake trees (twice in
each). Adding the amortized costs of the rotations, we
can bound the total amortized cost of the splays by
6q log n + (3k − 2). The first term results from two
telescoping sums: one accounts for all rotations within
compress trees and during “primary rake” splays, and
the other for rotations during “secondary rake” splays.
The additive term is an upper bound on the number of
zig moves.

The second pass performs k − 1 splices. From
Lemma 5.1, the total amortized cost is at most 3q log n+
4(k − 1) (the sum of ranks telescopes).

The splay on the third pass reduces the depth of
the active node from k − 1 to 0 with k − 1 rotations.
The total amortized cost of the step is 3q log n+1. Our
definition of potential charges q time units per rotation;
since the actual cost is one, this leaves us (q − 1)(k − 1)
extra units. Setting q = 8, we will be only one unit
short of fully paying for the extra 3k − 2 rotations in
the first pass and for the 4k − 4 unpaid moves in the
second pass.

This bounds the cost of the exposing the target
vertex at 12q log n + 2 = 96 log n + 2 = O(log n). The
same applies to the source.

We claim both link and cut take O(log n) amortized
time. This is certainly a lower bound, since both begin
with soft expose. Link goes on to perform a constant
number of operations, all close to the root; this increases
the potential by at most O(log n). Cut is slightly more
complicated, since it performs one or two additional
splays (in a foster subtree of each new root). Since



each splay takes O(log n) amortized time, the claim still
holds. We have thus proved the following:

Theorem 5.1. Self-adjusting top trees support link,
cut, and expose in O(log n) amortized time.

6 Final Remarks

Our data structure demonstrates that the two main ap-
proaches used to represent dynamic trees are equivalent.
ST-trees represent a partition of the trees into disjoint
paths. Topology trees, RC-trees, and top trees are based
on tree contraction. Frederickson [9] noticed that par-
titions and contractions have similarities, and Alstrup
et al. [3] even showed that topology trees can be imple-
mented using ST-trees. However, the transformation is
far from direct, as the authors themselves observe.

We use a more direct mapping. Any sequence of
rakes and compresses can be translated into a (unique)
partition of the tree into edge-disjoint paths. Con-
versely, any partition into paths can be translated into
a sequence of rakes and compresses, although not nec-
essarily a unique one. In our case, tree edges will be
in the same compress tree if and only if they belong
to the same path in the partition. The result is a top
tree representation with very little overhead, as a single
binary tree with one node per cluster. Topology trees,
in contrast, must represent each tree that results from
a parallel set of rakes and compresses, as well as the
relationships between these trees.

We have an early implementation of our data struc-
ture, and the results are encouraging. An implementa-
tion of the basic ST-tree interface [16] on top of it is
roughly twice as slow as a direct (self-adjusting) imple-
mentation, which is remarkable considering how much
more general our data structure is. It supports subtree
operations on trees of unbounded degree and ordered
incidence lists, and neither of these features is required
by this particular application.

In such cases (when its full power is not needed), our
data structure can indeed be simplified. When there is
no order among the edges around each vertex, we can
replace the two foster children of a compress node by a
single middle child (as in phantom trees), which greatly
simplifies splice, cut, and link. Further simplification is
possible for applications (such as our initial example)
where rakes have no effect on the target cluster. Then
we can completely eliminate rake trees and link the root
node of each compress tree directly to the compress tree
above, mimicking the dashed edges of ST-trees [16]. In
fact, one can think of our data structure as a generalized
version of ST-trees.

We observe that the constant factors obtained in
our analysis are rather large. Although a more careful

analysis might reduce them, we are also investigating
whether there is further room for simplification in the
full version of the data structure. In particular, it might
be interesting to relax some of the constraints imposed
on the structure of the top tree, such as performing all
rakes in a subsequence at once.

Another question is whether we can obtain other
practical implementations of top trees. In particular,
we are interested in a worst-case version. Alstrup et al.
have shown that top trees can be implemented as a layer
on top of topology trees [3]; this proves that an O(log n)
worst-case solution does exist. Using some of the ideas
in [13], we have devised (in joint work with S. Alstrup,
J. Holm, and M. Thorup) an alternative version based
on an explicit representation of the contraction: rakes
and compresses are executed in rounds, and updates to
the contraction happen in a bottom-up fashion. This
implementation requires keeping one tree per level as
well as the links between them, which makes it just
as complicated as topology trees. Another approach
would be to adapt the algorithms presented here to work
with globally biased binary trees instead of splay trees,
but this solution is unlikely to be practical. We are
currently looking for something simpler. Finally, we are
also considering randomization as a tool to simplify the
data structure.

Acknowledgements. We thank Umut Acar, Guy
Blelloch, and Mikkel Thorup for helpful discussions.

References

[1] U. A. Acar, G. E. Blelloch, R. Harper, J. L. Vittes, and
S. L. M. Woo. Dynamizing static algorithms, with ap-
plications to dynamic trees and history independence.
In Proceedings of the Fifteenth ACM-SIAM Symposium
on Discrete Algorithms, pages 524–533, 2004.

[2] R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved
time bounds for the maximum flow problem. SIAM
Journal on Computing, 18(5):939–954, 1989.

[3] S. Alstrup, J. Holm, K. de Lichtenberg, and
M. Thorup. Maintaining diameter, center, and
median of fully-dynamic trees with top trees.
http://arxiv.org/abs/cs/0310065, 2003.

[4] S. Altrup, J. Holm, K. de Lichtenberg, and M. Thorup.
Minimizing diameters of dynamic trees. In Proc.
of the 24th International Colloquium on Automata,
Languages and Programming (ICALP), volume 1256
of Lecture Notes in Comp. Science, pages 270–280.
Springer-Verlag, 1997.

[5] S. W. Bent, D. D. Sleator, and R. E. Tarjan. Biased
search trees. SIAM Journal of Computing, 14(3):545–
568, 1985.

[6] R. F. Cohen and R. Tamassia. Dynamic expression
trees. Algorithmica, 13:329–346, 1995.



[7] G. N. Frederickson. Data structures for on-line update
of minimum spanning trees, with applications. SIAM
Journal of Computing, 14(4):781–798, 1985.

[8] G. N. Frederickson. Ambivalent data structures for
dynamic 2-edge-connectivity and k smallest spanning
trees. SIAM Journal of Computing, 26(2):484–538,
1997.

[9] G. N. Frederickson. A data structure for dynami-
cally maintaining rooted trees. Journal of Algorithms,
24:37–65, 1997.

[10] A. V. Goldberg, M. D. Grigoriadis, and R. E. Tarjan.
Use of dynamic trees in a network simplex algorithm
for the maximum flow problem. Math. Programming,
50:277–290, 1991.

[11] A. V. Goldberg and R. E. Tarjan. A new approach
to the maximum-flow problem. Journal of the ACM,
35(4):921–940, 1988.

[12] M. R. Henzinger and V. King. Randomized fully
dynamic graph algorithms with polylogarithmic time
per operation. Journal of the ACM, 46(4):502–516,
1999.

[13] J. Holm and K. de Lichtenberg. Top-trees and dynamic
graph algorithms. Technical Report DIKU-TR-98/17,
Department of Computer Science, University of Copen-
hagen, 1998.

[14] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-
logarithmic deterministic fully-dynamic algorithms for
connectivity, minimum spanning tree, 2-edge, and
biconnectivity. Journal of the ACM, 48(4):723–760,
2001.

[15] G. L. Miller and J. H. Reif. Parallel tree contraction
and its applications. In Proceedings of the 26th An-
nual IEEE Symposium on Foundations of Computer
Science, pages 478–489, 1985.

[16] D. D. Sleator and R. E. Tarjan. A data structure
for dynamic trees. Journal of Computer and System
Sciences, 26(3):362–391, 1983.

[17] D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. Journal of the ACM, 32(3):652–686, 1985.

[18] R. E. Tarjan. Amortized computational complexity.
SIAM J. Alg. Disc. Meth., 6(2):306–318, 1985.

[19] R. E. Tarjan. Dynamic trees as search trees via
Euler tours, applied to the network simplex algorithm.
Mathematical Programming, 78(2):169–177, 1997.

Appendix: An Example

The left part of Figure 11 shows an example of a free
tree. Edges are arranged in counter-clockwise order
around each vertex. To represent it, we first pick
a degree-one vertex as the root and direct all edges
towards it. Then, we divide the tree into maximal non-
crossing edge-disjoint paths, all starting at some leaf.
The right part of Figure 11 shows a possible partition
with root z. A top tree corresponding to this partition is
shown in Figure 12. Base nodes are shaded rectangles,
compress nodes are white rectangles, and rake nodes

are circles. Note that some nodes appear in pairs; in
such cases, the foster child is on the left, and the proper
child on the right. Non-paired nodes are always proper
children.

The root path is abcwpz. It is represented by the
top compress tree in Figure 12, which has Nb, Nc, Nw,
and Np as internal nodes, and ab, bc, cw, pw, and pz as
leaves. Although the leaves represent the edges in the
path, they need not appear in symmetric order.

The largest rake tree in the example has three
internal nodes (β, δ, and ε) and four leaves (Nd, Ne,
cf and Ng). The leaves all represent unit trees that are
rooted at c and occur between (b, c) and (c, w) in the
circular order (these are edges of the path that contains
c). The first (leftmost) unit tree is composed by edges
(d, r) and (c, d); the rightmost contains (g, h), (g, j), and
(c, g).

z
y

xwv

u

t

s
r q

p

o

n

l k

j

i hg

fe
d

c

b

a

z
y

xwv

u

t

s
r q

p

o

n

l k

j

i hg

fe
d

c

b

a

Figure 11: Example: Original tree and directed version
(rooted at z and partitioned).

pzpxpw

Np

abbt

cw

gjghcg

Ng

cf

eqcees

Ne

ε

δ

drcd

Nd

βbc

kncn

in

nvuvlv

Nv

γ

Nn

Ncwyow

Nbα

Nw

Figure 12: Corresponding top tree. Base nodes are
shaded rectangles, compress nodes are white rectangles,
rake nodes are circles.


