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Abstract. The classification of high dimensional data, such as images,gene-
expression data and spectral data, poses an interesting challenge to machine learn-
ing, as the presence of high numbers of redundant or highly correlated attributes
can seriously degrade classification accuracy. This paper investigates the use of
Principal Component Analysis (PCA) to reduce high dimensional data and to im-
prove the predictive performance of some well known machinelearning methods.
Experiments are carried out on a high dimensional spectral dataset, in which the
task is to identify a target material within a mixture. Theseexperiments employ
the NIPALS (Non-Linear Iterative Partial Least Squares) PCA method, a method
that has been used in the field of chemometrics for spectral classification, and is
a more efficient alternative than the widely used eigenvector decomposition ap-
proach. The experiments show that the use of this PCA method can improve the
performance of machine learning in the classification of high dimensionsal data.

1 Introduction

PCA is a classical statistical method for transforming attributes of a dataset into a new
set of uncorrelated attributes called principal components (PCs). PCA can be used to
reduce the dimensionality of a dataset, while still retaining as much of thevariability of
the dataset as possible. High dimensional data can pose problems for machine learning
as predictive models based on such data run the risk of overfitting. Furthermore, many
of the attributes may be redundant or highly correlated, which can also lead to a degra-
dation of prediction accuracy. There are many examples of the use of machine learning
to classify high dimensional data, such as gene-expressionmicroarray data [1], image
data [2] and text classification [3]. Another example of highdimensional data, spectral
data, is used for the experiments presented in this paper. Inthe classification task con-
sidered here, Raman spectra may used for the automatic identification of a substance
within a material. Typically, methods from a field of study known as chemometrics have
been applied to this particular problem [4], and these methods use PCA to handle the
high dimensional spectra. The goal of this research is to determine if PCA can be used
to improve the performance of machine learning methods in the classification of such
high dimensional data.

In the first set of experiments presented in this paper, the performance of five well
known machine learning techniques (Support Vector Machines, k-Nearest Neighbours,
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C4.5 Decision Tree, RIPPER and Naive Bayes) along with classification by Linear
Regression are compared by testing them on a Raman spectral dataset. A number of pre-
processing techniques such as normalisation and first derivative are applied to the data
to determine if they can improve the classification accuracyof these methods. A second
set of experiments is carried out in which PCA and machine learning (and the various
pre-processing methods) are used in combination. This set of PCA experiments also
facilitates a comparison of machine learning with the popular chemometric technique of
Principal Component Regression (PCR), which combines PCA and Linear Regression.

The paper is organised as follows. Section 2 will give a briefdescription of Raman
spectroscopy and outline the characteristics of the data itproduces. Section 3 describes
PCA and the PCR method that incorporates PCA into it. Section4 provides a brief
description of each machine learning technique used in thisinvestigation. Experimental
results along with a discussion are presented in Section 5. Section 6 describes related
research and Section 7 presents the conclusion of this study.

2 Raman Spectroscopy

Raman spectroscopy is the measurement of the wavelength andintensity of light that
has been scattered inelastically by a sample, known as the Raman effect [5]. This Raman
scattering provides information on the vibrational motions of molecules in the sample
compound, which in turn provides a chemical fingerprint. Every compound has its own
unique Raman spectrum that can be used for sample identification. Each point of a
spectrum represents the intensity recorded at a particularwavelength. A Raman dataset
therefore has one attribute for each point on its constituent spectra. Raman spectra can
be used for the identification of materials such as narcotics[4] and explosives [6].

Raman spectra are a good example of high dimensional data; a Raman spectrum is
typically made up of 500-3000 data points, and many datasetsmay only contain 20-
200 samples. However, there are other characteristics of Raman spectra that can be
problematic for machine learning:

– Collinearity: many of the attributes (spectral data points) are highly correlated to
each other which can lead to a degradation of the prediction accuracy.

– Noise: particularly prevalent in spectra of complex mixtures. Predictive models that
are fitted to noise in a dataset will not perform well on other test datasets.

– Fluorescence: the presence of fluorescent materials in a sample can obscurethe
Raman signal and therefore make classification more difficult [4].

– Variance of Intensity: a wide variance in spectral intensity occurs between different
sample measurements [7].

3 Principal Component Analysis

In the following description, the dataset is represented bythe matrixX , whereX is a
N × p matrix. For spectral applications, each row ofX , thep-vectorxi contains the
intensities at each wavelength of the spectrum samplei. Each column,Xj contains all
the observations of one attribute. PCA is used to overcome the previously mentioned
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problems of high-dimensionality and collinearity by reducing the number of predictor
attributes. PCA transforms the set of inputsX1, X2, . . . , XN into another set of column
vectorsT1, T2, . . . , TN where theT ’s have property that most of the original data’s
information content (or most of its variance) is stored in the first fewT ’s (the principal
component scores). The idea is that this allows reduction ofthe data to a smaller number
of dimensions, with low information loss, simply by discarding some of the principal
components (PCs). Each PC is a linear combination of the original inputs and each
PC is orthogonal, which therefore eliminates the problem ofcollinearity. This linear
transformation of the matrixX is specified by ap× p matrixP so that the transformed
variablesT are given by:

T = XP or alternativelyX is decomposed as follows:X = TP T (1)

whereP is known as theloadings matrix. The columns loadings matrixP can be cal-
culated as the eigenvectors of the matrixXT X [8], a calculation which can be compu-
tationally intensive when dealing with datasets of 500-3000 attributes. A much quicker
alternative is the NIPALS method [9]. The NIPALS method doesnot calculate all the
PCs at once as is done in the eigenvector approach. Instead, it iteratively calculates the
first PC, then the second and continues until the required number of PCs have been
generated. See Ryder [4] and O’Connellet al. [7]) for examples of the use of PCA in
the classification of materials from Raman spectra.

3.1 Principal Component Regression

The widely used chemometric technique of PCR is a two-step multivariate regression
method, in which PCA of the data is carried out in the first step. In the second step,
a multiple linear regression between the PC scores obtainedin the PCA step and the
predictor variable is carried out. In this regression step,the predictor variable is a value
that is chosen to represent the presence or absence of the target in a sample, e.g. 1 for
present and -1 for absent. In this way, a classification modelcan be built using any
regression method.

4 Machine Learning

4.1 Support Vector Machine

The SVM [10] is a powerful machine learning tool that is capable of representing non-
linear relationships and producing models that generalisewell to unseen data. For bi-
nary classification, a linear SVM (the simplest form of SVM) finds an optimal linear
separator between the two classes of data. This optimal separator is the one that results
in the widest margin of separation between the two classes, as a wide margin implies
that the classifier is better able to classify unseen spectra. To regulate overfitting, SVMs
have a complexity parameter,C, which determines the trade-off between choosing a
large-margin classifier and the amount by which misclassified samples are tolerated. A
higher value ofC means that more importance is attached to minimising the amount
of misclassification than to finding a wide margin model. To handle non-linear data,
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kernels (e.g. Radial Basis Function (RBF), Polynomial or Sigmoid) are introduced to
map the original data to a new feature space in which a linear separator can be found. In
addition to theC parameter, each kernel may have a number of parameters associated
with it. For the experiments reported here, two kernels wereused: the RBF kernel, in
which the kernel width,σ, can be changed, and the Linear kernel, which has no ex-
tra parameter. In general, the SVM is considered useful for handling high dimensional
data.

4.2 k-Nearest Neighbours

k-Nearest Neighbours (k-NN) [11] is a learning algorithm which classifies a test sample
by firstly obtaining the class of thek samples that are the closest to the test sample. The
majority class of these nearest samples (or nearest single sample whenk = 1) is returned
as the prediction for that test sample. Various measures maybe used to determine the
distance between a pair of samples. In these experiments, the Euclidean distance mea-
sure was used. In practical terms, each Raman spectrum is compared to every other
spectrum in the dataset. At each spectral data point, the difference in intensity between
the two spectra is measured (distance). The sum of the squared distances for all the data
points (full spectrum) gives a numerical measure of how close the spectra are.

4.3 C4.5

The C4.5 decision tree [12] algorithm generates a series of if-then rules that are repre-
sented as a tree structure. Each node in the tree correspondsto a test of the intensity at a
particular data point of the spectrum. The result of a test atone node determines which
node in the tree is checked next until finally, a leaf node is reached. Each leaf specifies
the class to be returned if that leaf is reached.

4.4 RIPPER

RIPPER [13] (Repeated Incremental Pruning to Produce ErrorReduction) is an induc-
tive rule-based learner that builds a set of prepositional rules that identify classes while
minimising the amount of error. The number of training examples misclassified by the
rules defines the error. RIPPER was developed with the goal ofhandling large noisy
datasets efficiently whilst also achieving good generalisation performance.

5 Experimental Results

5.1 Dataset

In the following experiments, the task is to identify acetaminophen, a pain-relieving
drug that is found in many over-the-counter medications. The acetaminophen dataset
comprises the Raman spectra of 217 different samples. Acetaminophen is present in
87 of the samples, the rest of the samples being made up of various pure inorganic
materials. Each sample spectrum covers the range 350-2000 cm−1 and is made up of
1646 data points. For more details on this dataset, see O’Connell et al. [7].
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5.2 Comparison of Machine Learning Methods

Table 1 shows the results of six different machine learning classification methods using
a 10-fold cross-validation test on the acetaminophen dataset. The first column shows
the average classification error achieved on the raw dataset(RD). The three remaining
columns show the results of using each machine learning method in tandem with a
pre-processing technique:

– ND: dataset with each sample normalised. Each sample is divided across by the
maximum intensity that occurs within that sample.

– FD: a Savitzky-Golay first derivative [14], seven-point averaging algorithm is ap-
plied to the raw dataset.

– FND: a normalisation step is carried out after applying a first derivative to each
sample of the raw dataset.

Table 1. Percentage Classification Error of Different Machine Learning Methods on Ac-
etaminophen Dataset

Pre-processing Technique
Method RD ND FD FND
Linear SVM 6.45 2.76 3.23 0.92*

(C=100) (C=1) (C=10000) (C=0.1)
RBF SVM 5.07 2.76 1.84 0.92*

(C=1000, σ=0.1) (C=1000, σ=0.001) (C=10000, σ=10) (C=10, σ=0.01)
k-NN 11.06 7.83 4.61 4.15

(k=1) (k=1) (k=10) (k=1)
C4.5 10.14 7.83 1.84 1.38

RIPPER 15.67 11.06 3.69 2.3

Naive Bayes 25.35 13.82 25.81 5.53

Linear Reg. 27.65 16.13 25.35 20.28

Table 1 shows the lowest average error average achieved by each classifier and
pre-processing combination. For all these methods, apart from k-NN, the WEKA [11]
implementation was used. The default settings were used forC4.5, RIPPER and Naive
Bayes. For SVMs, RBF and Polynomial kernels with different parameter settings were
tested. The parameter settings that achieved the best results are shown in parentheses.
The Linear SVM was tested for the following values ofC: 0.1, 1, . . . , 10000. The same
range ofC values were used for RBF SVM, and these were tested in combination
with theσ values of:0.0001, 0.001, . . . , 10. For k-NN, the table shows the value fork

(number of neighbours) that resulted in the lowest percentage error. The k-NN method
was tested for all values ofk from 1 to 20. The results of each machine learning and
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pre-processing technique combination of Table 1 were compared using a paired t-test
based on a 5% confidence level and using a corrected variance estimate [15]. The low-
est average error over all results in Table 1 of 0.92% (i.e. only two misclassifications,
achieved by both Linear and RBF SVM) is highlighted in bold and indicated by an as-
terisk. Those results which do not differ significantly (according to the t-test) are also
highlighted in bold.

On both the raw (RD) and normalised (ND) dataset, both SVM models perform
better than any of the other machine learning methods, as there is no significant differ-
ence between the best overall result and the SVM results on RDand ND, whereas a
significant difference does exist between the best overall result and all other machine
learning methods on RD and ND. This confirms the notion that SVMs are particularly
suited to dealing with high dimensional data and it also suggests that SVMs are capable
of handling a high degree of collinearity in the data. LinearRegression, on the other
hand, performs poorly with all pre-processing techniques.This poor performance can
be attributed to its requirement that all the columns of the data matrix arelinearly in-
dependent [8], a condition that is violated in highly correlated spectral data. Similarly,
Naive Bayes has recorded a high average error on the RD, ND andFD data. This is pre-
sumably because of its assumption of independence of each ofthe attributes. It is clear
from this table that the pre-processing techniques of FD andFND improve the perfor-
mance of the majority of the classifiers. For SVMs, the error is numerically smaller, but
not a significant improvement over the RD and ND results. Notethat Linear Regression
is the only method that did not achieve a result to compete with the best overall result.

Overall, the SVM appears to exhibit the best results, matching or outperforming
all other methods on the raw and pre-processed data. With effective pre-processing,
however, the performance of other machine learning methodscan be improved so that
they are close to that of the SVM.

5.3 Comparison of Machine Learning methods with PCA

As outlined in Section 3, PCA is used to alleviate problems such as high dimensionality
and collinearity that are associated with spectral data. For the next set of experiments,
the goal was to determine whether machine learning methods could benefit from an
initial transformation of the dataset into a smaller set of PCs, as is used in PCR. The
same series of cross-validation tests were run, except in this case, during each fold the
PC scores of the training data were fed as inputs to the machine learning method. The
procedure for the 10-fold cross-validation is as follows:

1. Carry out PCA on the training data to generate a loadings matrix.
2. Transform training data into a set of PC scores using the firstP components of the

loadings matrix.
3. Build a classification model based on the training PC scores data.
4. Transform the held out test fold data to PC scores using theloadings matrix gener-

ated from the training data.
5. Test classification model on the transformed test fold.
6. Repeat steps 1-5 for each iteration of the 10-fold cross-validation.
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With each machine learning and pre-processing method combination, the above 10-
fold cross-validation test was carried out forP=1 to 20 principal components. There-
fore, 20 different 10-fold cross-validation tests were runfor Naive Bayes, for example.
For those classifiers that require additional parameters tobe set, more tests had to be run
to test the different combinations of parameters, e.g.C, σ, andP for RBF SVM. The
same ranges forC, σ andk were tested as those used for the experiments of Table 1.

Table 2. Percentage Classification Error of Different Machine Learning Methods with PCA on
Acetaminophen Dataset

Pre-processing Technique
Method RD ND FD FND
Linear SVM 5.07 1.84 3.23 0.46

(P=18,C=0.1) (P=13,C=0.1) (P=14,C=0.01) (P=4,C=0.1)
RBF SVM 6.91 2.76 2.23 0.46

(P=19,C=100, (P=16,C=10, (P=12, C=10, (P=5,C=10,
σ=0.001) σ=0.001) σ=0.001) σ=0.001)

k-NN 11.06 5.99 2.3 0.0*
(P=17,k=3) (P=10,k=1) (P=14,k=1) (P=4,k=5)

C4.5 7.83 7.37 7.37 1.38
(P=20) (P=19) (P=5) (P=6)

RIPPER 11.98 8.29 6.45 2.3
(P=20) (P=8) (P=5) (P=3)

Naive Bayes 38.71 10.6 11.52 3.23
(P=1) (P=8) (P=5) (P=2)

PCR 9.22 5.53 8.29 1.38
(PCA+Linear Reg.) (P=16) (P=20) (P=11) (P=80)

Table 2 shows the lowest average error achieved by each combination of machine
learning and pre-processing method with PCA. The number of PCs used to achieve
this lowest average error is shown in parentheses, along with the additional parameter
settings for the SVM and k-NN classifiers. As with Table 1, thebest result over all the
results of Table 2 is highlighted in bold and denoted by an asterisk, with those results
that bear no significant difference from the best overall result also highlighted in bold.
Again, the pre-processing method of FND improves the performance of the majority
of the classifiers, Naive Bayes being the exception in this case. In comparing the best
result of Table 1 with the best result of Table 2 for each machine learning method (all
in the FND column), it can be seen that the addition of the PCA step results in either
the same error (C4.5 and RIPPER) or a numerically smaller error (Linear SVM, RBF
SVM, k-NN and Linear Regression). The improvement effectedby the inclusion of this
PCA step is particularly evident with the Linear Regressiontechnique. Note that this
combination of PCA and Linear Regression is equivalent to PCR.

Despite the fact that for the SVM and k-NN classifiers, there is no significant differ-
ence between the best results with or without PCA, it is noteworthy that the SVM and
k-NN classifiers with PCA were capable of achieving such low errors with far fewer
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attributes, only four PCs for the Linear SVM and k-NN and 5 PCsfor the RBF SVM.
This makes the resulting classification model much more efficient when classifying new
data. In contrast, PCR required a much greater number of PCs (80) to achieve its lowest
error. (This result was discovered in the experiment detailed in the next section.)

To make an overall assessment of the effect of using PCA in combination with
machine learning, a statistical comparison (paired t-testwith 5% confidence level) of
the 28 results of Table 1 and Table 2 was carried out. This indicates that, overall, a
significant improvement in the performance of machine learning methods is gained
with this initial PCA step. It can therefore be concluded that the incorporation of PCA
into machine learning is useful for the classification of high dimensional data.

5.4 Effect of PCA on Classification Accuracy

To further determine the effect of PCA on the performance of machine learning meth-
ods, each machine learning method (using the best parametersetting and pre-processing
technique) was tested using larger numbers of PCs. Each method was tested for values
of P in the range 1-640. Figure 1 shows the change in error of some of the methods
versus the number of PCs retained to build the model.

Fig. 1. Effect of changing the number of PCs on Machine Learning Classification Error

It can be seen from this graph that as PCs are added, error is initially reduced for all
methods. Most methods require no more than six PCs to achievethe lowest error. After
this lowest error point, the behaviour of the methods differsomewhat. Some classifiers
suffer drastic increases in error within the range of PCs tested: PCR, RBF SVM, and
k-NN (although not to the same extent as the previous examples). In contrast, the error
for C4.5 never deviates too much from its lowest error at six PCs. This may be due to
its ability to prune irrelevant attributes from the decision tree model. The Linear SVM
initially seems to follow the pattern of the majority of classifiers, but then returns to
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a more acceptable error with the higher number of PCs. Overall, it is evident that all
of the classifiers, apart from PCR, will achieve their best accuracy with a relatively
small number of PCs; it is probably unnecesary to generate any more than twenty PCs.
However, the number of PCs required will depend on the underlying dataset. Further
experiments on more spectral data, or other examples of highdimensional data, are
required to determine suitable ranges of PCs for these machine learning methods.

6 Related Research

The most closely related research to the work presented herecan be found in Sigurdsson
et al. [16], where they report on the use of neural networks for the detection of skin
cancer based on Raman data that has been reduced using PCA. They achieve PCA using
singular value decomposition (SVD), a method which calculatesall the eigenvectors of
the data matrix, unlike the NIPALS method that was used here.In addition, they do not
present any comparison with neural networks on the raw data without the PCA step.

As far as the authors are aware, few studies have been carriedout that investigate
the effect of using PCA with a number of machine learning algorithms. Popelinsky [17]
does analyse the effect of PCA (again, eigenvector decomposition is used) on three dif-
ferent machine learning algorithms (Naive Bayes, C5.0 and an instance-based learner).
In this paper, the principal component scores are added to the original attribute data
and he has found this to result in a decrease in error rate for all methods on a signifi-
cant number of the datasets. However, the experiments were not based on particularly
high dimensional datasets. It is also worth noting that there does not appear to be any
evidence of the use of NIPALS PCA in conjunction with machinelearning for the clas-
sification of high dimensional data.

7 Conclusions

This paper has proposed the use of an efficient PCA method, NIPALS, to improve the
performance of some well known machine learning methods in the classification of high
dimensional data. Experiments in the classification of Raman spectra have shown that,
overall, this PCA method improves the performance of machine learning when dealing
with high dimensional data. Furthermore, through the use ofPCA, these low errors
were achieved despite a major reduction of the data; from theoriginal 1646 attributes
to at least six attributes. Additional experiments have shown that it is not necessary to
generate more than twenty PCs to find an optimal set for the spectral dataset used, as
the performance of the majority of classifiers degrades withincreasing numbers of PCs.
This fact makes NIPALS PCA particularly suited to the proposed approach, as it does
not require the generation of all PCs of a data matrix, unlikethe widely used eigenvector
decomposition methods. This paper has also shown that the pre-processing technique
of first derivative followed by normalisation improves the performance of the majority
of these machine learning methods in the classification of the dataset used.

Overall, the use of NIPALS PCA in combination with machine learning and the first
derivative with normalisation pre-processing technique appears to be a promising ap-
proach for the classification of high dimensional data. Future work will involve testing
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this approach on other high dimensional datasets and could also investigate the auto-
matic selection of parameters for these techniques, such asthe number of PCs, kernel
parameters for SVM andk for k-NN.
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