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Abstract. The classification of high dimensional data, such as imagese-

expression data and spectral data, poses an interestitenggto machine learn-
ing, as the presence of high numbers of redundant or highthgleded attributes
can seriously degrade classification accuracy. This papesiigates the use of
Principal Component Analysis (PCA) to reduce high dimensiaata and to im-

prove the predictive performance of some well known maclkgaming methods.
Experiments are carried out on a high dimensional specatalsét, in which the
task is to identify a target material within a mixture. Thes@eriments employ
the NIPALS (Non-Linear Iterative Partial Least SquarespR@ethod, a method
that has been used in the field of chemometrics for spectasiication, and is
a more efficient alternative than the widely used eigenved®composition ap-
proach. The experiments show that the use of this PCA metaodntprove the

performance of machine learning in the classification ohldgnensionsal data.

1 Introduction

PCA is a classical statistical method for transforminglattes of a dataset into a new
set of uncorrelated attributes called principal composi¢RCs). PCA can be used to
reduce the dimensionality of a dataset, while still retagras much of theariability of
the dataset as possible. High dimensional data can poskeprefor machine learning
as predictive models based on such data run the risk of diregfiFurthermore, many
of the attributes may be redundant or highly correlatedctvican also lead to a degra-
dation of prediction accuracy. There are many examplessofiie of machine learning
to classify high dimensional data, such as gene-expressicnoarray data [1], image
data [2] and text classification [3]. Another example of hitiimensional data, spectral
data, is used for the experiments presented in this paptrelolassification task con-
sidered here, Raman spectra may used for the automatidgfictimn of a substance
within a material. Typically, methods from a field of studydam as chemometrics have
been applied to this particular problem [4], and these ndsthse PCA to handle the
high dimensional spectra. The goal of this research is terdene if PCA can be used
to improve the performance of machine learning methodserctassification of such
high dimensional data.

In the first set of experiments presented in this paper, thiemaeance of five well
known machine learning techniques (Support Vector MachikéNearest Neighbours,



C4.5 Decision Tree, RIPPER and Naive Bayes) along with ifieaon by Linear
Regression are compared by testing them on a Raman spextasét A number of pre-
processing techniques such as normalisation and firstadievare applied to the data
to determine if they can improve the classification accud¢fiese methods. A second
set of experiments is carried out in which PCA and machinelag (and the various
pre-processing methods) are used in combination. Thisf9e€é experiments also
facilitates a comparison of machine learning with the papchemometric technique of
Principal Component Regression (PCR), which combines R@ALinear Regression.

The paper is organised as follows. Section 2 will give a latefcription of Raman
spectroscopy and outline the characteristics of the dataduces. Section 3 describes
PCA and the PCR method that incorporates PCA into it. Sectignovides a brief
description of each machine learning technique used inrthéstigation. Experimental
results along with a discussion are presented in Sectioe&idd 6 describes related
research and Section 7 presents the conclusion of this.study

2 Raman Spectroscopy

Raman spectroscopy is the measurement of the wavelengtimt@mgdity of light that
has been scattered inelastically by a sample, known as thaReffect [5]. This Raman
scattering provides information on the vibrational mosiai molecules in the sample
compound, which in turn provides a chemical fingerprint.ipw@®mpound has its own
unique Raman spectrum that can be used for sample identificdiach point of a
spectrum represents the intensity recorded at a partisaaglength. A Raman dataset
therefore has one attribute for each point on its constitspectra. Raman spectra can
be used for the identification of materials such as narcticand explosives [6].

Raman spectra are a good example of high dimensional datanamspectrum is
typically made up of 500-3000 data points, and many datasatsonly contain 20-
200 samples. However, there are other characteristics wfaRapectra that can be
problematic for machine learning:

— Collinearity: many of the attributes (spectral data points) are highlyatated to
each other which can lead to a degradation of the predictiouracy.

— Noise: particularly prevalent in spectra of complex mixtures dieve models that
are fitted to noise in a dataset will not perform well on otlest tiatasets.

— Fluorescence: the presence of fluorescent materials in a sample can obdwire
Raman signal and therefore make classification more diffiépl

— Variance of Intensity: a wide variance in spectral intensity occurs between differ
sample measurements [7].

3 Principal Component Analysis

In the following description, the dataset is representethieymatrix X, whereX is a
N x p matrix. For spectral applications, each row.f the p-vectorz; contains the
intensities at each wavelength of the spectrum samdach columnX; contains all
the observations of one attribute. PCA is used to overcom@taviously mentioned



problems of high-dimensionality and collinearity by rethgcthe number of predictor
attributes. PCA transforms the set of inpixis, Xo, . .., Xy into another set of column
vectorsTy, Ty, ..., Ty where theT’s have property that most of the original data’s
information content (or most of its variance) is stored ie finst few1"s (the principal
componentscores). The idea is that this allows reductitimeodlata to a smaller number
of dimensions, with low information loss, simply by discexgl some of the principal
components (PCs). Each PC is a linear combination of theénafignputs and each
PC is orthogonal, which therefore eliminates the problensaifinearity. This linear
transformation of the matriX is specified by @ x p matrix P so that the transformed
variablesI” are given by:

T = XP oralternativelyX is decomposed as follow&’ = 7 PT (1)

whereP is known as théoadings matrix. The columns loadings matrik can be cal-
culated as the eigenvectors of the mafXiX X [8], a calculation which can be compu-
tationally intensive when dealing with datasets of 500@8tributes. A much quicker
alternative is the NIPALS method [9]. The NIPALS method daescalculate all the
PCs at once as is done in the eigenvector approach. Insté@adaiively calculates the
first PC, then the second and continues until the requiredbenrof PCs have been
generated. See Ryder [4] and O’Conretll. [7]) for examples of the use of PCA in
the classification of materials from Raman spectra.

3.1 Principal Component Regression

The widely used chemometric technique of PCR is a two-steftivariate regression

method, in which PCA of the data is carried out in the first stapghe second step,
a multiple linear regression between the PC scores obtamntgte PCA step and the
predictor variable is carried out. In this regression stie predictor variable is a value
that is chosen to represent the presence or absence ofgle¢itan sample, e.g. 1 for
present and -1 for absent. In this way, a classification modelbe built using any

regression method.

4 Machine Learning

4.1 Support Vector Machine

The SVM [10] is a powerful machine learning tool that is cdpaif representing non-
linear relationships and producing models that generaledéto unseen data. For bi-
nary classification, a linear SVM (the simplest form of SVM)d$ an optimal linear
separator between the two classes of data. This optimatlatep# the one that results
in the widest margin of separation between the two classea,veide margin implies
that the classifier is better able to classify unseen spékdnaegulate overfitting, SVMs
have a complexity parameter, which determines the trade-off between choosing a
large-margin classifier and the amount by which misclassg@mmples are tolerated. A
higher value ofC means that more importance is attached to minimising theuamo
of misclassification than to finding a wide margin model. Tadla non-linear data,



kernels (e.g. Radial Basis Function (RBF), Polynomial @gn%iid) are introduced to
map the original data to a new feature space in which a lireygarator can be found. In
addition to theC' parameter, each kernel may have a number of parametersadasdoc
with it. For the experiments reported here, two kernels wesed: the RBF kernel, in
which the kernel widthg, can be changed, and the Linear kernel, which has no ex-
tra parameter. In general, the SVM is considered usefuldodling high dimensional
data.

4.2 k-Nearest Neighbours

k-Nearest Neighbours (k-NN) [11] is a learning algorithmie¥hclassifies a test sample
by firstly obtaining the class of thesamples that are the closest to the test sample. The
majority class of these nearest samples (or nearest seugiels wherk = 1) is returned

as the prediction for that test sample. Various measuresheajsed to determine the
distance between a pair of samples. In these experimentgutlidean distance mea-
sure was used. In practical terms, each Raman spectrum igacethto every other
spectrum in the dataset. At each spectral data point, thereiifce in intensity between
the two spectra is measured (distance). The sum of the stidatances for all the data
points (full spectrum) gives a numerical measure of howectbe spectra are.
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The C4.5 decision tree [12] algorithm generates a seriefstbén rules that are repre-
sented as a tree structure. Each node in the tree corresipomttst of the intensity at a
particular data point of the spectrum. The result of a teshatnode determines which
node in the tree is checked next until finally, a leaf nodeéshed. Each leaf specifies
the class to be returned if that leaf is reached.

4.4 RIPPER

RIPPER [13] (Repeated Incremental Pruning to Produce Redluction) is an induc-
tive rule-based learner that builds a set of prepositianabrthat identify classes while
minimising the amount of error. The number of training exéapnisclassified by the
rules defines the error. RIPPER was developed with the goladnflling large noisy
datasets efficiently whilst also achieving good genertidingperformance.

5 Experimental Results

5.1 Dataset

In the following experiments, the task is to identify aceitamphen, a pain-relieving
drug that is found in many over-the-counter medicationse @abetaminophen dataset
comprises the Raman spectra of 217 different samples. daedgphen is present in
87 of the samples, the rest of the samples being made up @fugapure inorganic
materials. Each sample spectrum covers the range 350-2000and is made up of
1646 data points. For more details on this dataset, see @&liat al. [7].



5.2 Comparison of Machine Learning Methods

Table 1 shows the results of six different machine learnlagsification methods using
a 10-fold cross-validation test on the acetaminophen data$e first column shows
the average classification error achieved on the raw da@&gt The three remaining
columns show the results of using each machine learningaddthtandem with a
pre-processing technique:

— ND: dataset with each sample normalised. Each sample idativéicross by the
maximum intensity that occurs within that sample.

— FD: a Savitzky-Golay first derivative [14], seven-point eaging algorithm is ap-
plied to the raw dataset.

— FND: a normalisation step is carried out after applying & fierivative to each
sample of the raw dataset.

Table 1. Percentage Classification Error of Different Machine L@anMethods on Ac-
etaminophen Dataset

Pre-processing Technique

Method RD ND FD FND
Linear SVM 6.45 2.76 3.23 0.92*
(C=100) (C=1 (C=10000) (C=0.1)
RBF SVM 5.07 2.76 1.84 0.92*
(C=1000, ¢=0.1) (C=1000, =0.001) (C=10000, c=10) (C=10, c=0.01)
k-NN 11.06 7.83 4.61 4.15
(k=1) (k=1) (k=10) (k=1)
C4.5 10.14 7.83 1.84 1.38
RIPPER 15.67 11.06 3.69 2.3
Naive Bayes 25.35 13.82 25.81 5.53
Linear Reg. 27.65 16.13 25.35 20.28

Table 1 shows the lowest average error average achieveddby odassifier and
pre-processing combination. For all these methods, apart k-NN, the WEKA [11]
implementation was used. The default settings were used4ds, RIPPER and Naive
Bayes. For SVMs, RBF and Polynomial kernels with differesmtgmeter settings were
tested. The parameter settings that achieved the bestsrasalshown in parentheses.
The Linear SVM was tested for the following values@f0.1, 1, ..., 10000. The same
range ofC values were used for RBF SVM, and these were tested in comidnina
with the o values o0f:0.0001, 0.001, ..., 10. For k-NN, the table shows the value for
(number of neighbours) that resulted in the lowest percgnéaror. The k-NN method
was tested for all values df from 1 to 20. The results of each machine learning and



pre-processing technique combination of Table 1 were coetbasing a paired t-test
based on a 5% confidence level and using a corrected variaticea& [15]. The low-
est average error over all results in Table 1 of 0.92% (i.& twmo misclassifications,
achieved by both Linear and RBF SVM) is highlighted in bold émdicated by an as-
terisk. Those results which do not differ significantly (ating to the t-test) are also
highlighted in bold.

On both the raw (RD) and normalised (ND) dataset, both SVM etogerform
better than any of the other machine learning methods, as heo significant differ-
ence between the best overall result and the SVM results omDND, whereas a
significant difference does exist between the best overalllt and all other machine
learning methods on RD and ND. This confirms the notion tha¥iSére particularly
suited to dealing with high dimensional data and it also sstgthat SVMs are capable
of handling a high degree of collinearity in the data. LinBagression, on the other
hand, performs poorly with all pre-processing techniqiiéss poor performance can
be attributed to its requirement that all the columns of tAmanatrix ardinearly in-
dependent [8], a condition that is violated in highly correlated spatdata. Similarly,
Naive Bayes has recorded a high average error on the RD, NBRmi&ta. This is pre-
sumably because of its assumption of independence of edhbb aftributes. It is clear
from this table that the pre-processing techniques of FDFMIB improve the perfor-
mance of the majority of the classifiers. For SVMs, the ersarnimerically smaller, but
not a significant improvement over the RD and ND results. NudéLinear Regression
is the only method that did not achieve a result to compete thi¢ best overall result.

Overall, the SVM appears to exhibit the best results, matclor outperforming
all other methods on the raw and pre-processed data. Witlctie# pre-processing,
however, the performance of other machine learning metbad$e improved so that
they are close to that of the SVM.

5.3 Comparison of Machine Learning methods with PCA

As outlined in Section 3, PCA is used to alleviate problenthsas high dimensionality
and collinearity that are associated with spectral datatli®next set of experiments,
the goal was to determine whether machine learning methodlsl denefit from an
initial transformation of the dataset into a smaller set 66Pas is used in PCR. The
same series of cross-validation tests were run, excepisrcéise, during each fold the
PC scores of the training data were fed as inputs to the maddémning method. The
procedure for the 10-fold cross-validation is as follows:

[

. Carry out PCA on the training data to generate a loadingsxmna

. Transform training data into a set of PC scores using teefficomponents of the

loadings matrix.

Build a classification model based on the training PC scdata.

4. Transform the held out test fold data to PC scores usinppttings matrix gener-
ated from the training data.

5. Test classification model on the transformed test fold.

6. Repeat steps 1-5 for each iteration of the 10-fold cradiskation.

N

w



With each machine learning and pre-processing method ewtibn, the above 10-
fold cross-validation test was carried out fBe=1 to 20 principal components. There-
fore, 20 different 10-fold cross-validation tests were fonNaive Bayes, for example.
For those classifiers that require additional parametdrs 8®t, more tests had to be run
to test the different combinations of parameters, €.g7, and P for RBF SVM. The
same ranges far', o andk were tested as those used for the experiments of Table 1.

Table 2. Percentage Classification Error of Different Machine LeasgrMethods with PCA on
Acetaminophen Dataset

Pre-processing Technique

Method RD ND FD FND

Linear SVM 5.07 1.84 3.23 0.46
(P=18,C=0.1) (P=13,C=0.1) (P=14,C=0.01) (P=4,C=0.1)

RBF SVM 6.91 2.76 2.23 0.46

(P=19,C=100, (P=16,C=10, (P=12,C=10, (P=5,C=10,
0=0.001)  0=0.001)  0=0.001)  ©=0.001)

k-NN 11.06 5.99 23 0.0*
(P=17k=3) (P=10k=1) (P=14k=1) (P=4k=5)
C4.5 7.83 7.37 7.37 1.38
(P=20) (P=19) (P=5) (P=6)
RIPPER 11.98 8.29 6.45 2.3
(P=20) (P=8) (P=5) (P=3)
Naive Bayes 38.71 10.6 11.52 3.23
(P=1) (P=8) (P=5) P=2)
PCR 9.22 5.53 8.29 1.38
(PCA+Linear Reg.) (P=16) (P=20) (P=11) (P=80)

Table 2 shows the lowest average error achieved by each patidn of machine
learning and pre-processing method with PCA. The numberG¥ &sed to achieve
this lowest average error is shown in parentheses, alorgthdt additional parameter
settings for the SVM and k-NN classifiers. As with Table 1, biest result over all the
results of Table 2 is highlighted in bold and denoted by aaraslt, with those results
that bear no significant difference from the best overallltesso highlighted in bold.
Again, the pre-processing method of FND improves the paréorce of the majority
of the classifiers, Naive Bayes being the exception in thé& cln comparing the best
result of Table 1 with the best result of Table 2 for each maelhearning method (all
in the FND column), it can be seen that the addition of the P@f sesults in either
the same error (C4.5 and RIPPER) or a numerically smaller éinear SVM, RBF
SVM, k-NN and Linear Regression). The improvement effetigthe inclusion of this
PCA step is particularly evident with the Linear Regresdiehnique. Note that this
combination of PCA and Linear Regression is equivalent t& PC

Despite the fact that for the SVM and k-NN classifiers, thenea significant differ-
ence between the best results with or without PCA, it is notéwy that the SVM and
k-NN classifiers with PCA were capable of achieving such lovers with far fewer



attributes, only four PCs for the Linear SVM and k-NN and 5 P@@she RBF SVM.
This makes the resulting classification model much moreieffievhen classifying new
data. In contrast, PCR required a much greater number of 883 $q achieve its lowest
error. (This result was discovered in the experiment daddi the next section.)

To make an overall assessment of the effect of using PCA inbgmation with
machine learning, a statistical comparison (paired tuat 5% confidence level) of
the 28 results of Table 1 and Table 2 was carried out. Thic#@ids that, overall, a
significant improvement in the performance of machine legrmethods is gained
with this initial PCA step. It can therefore be concluded tha& incorporation of PCA
into machine learning is useful for the classification ofrhiimensional data.

5.4 Effect of PCA on Classification Accuracy

To further determine the effect of PCA on the performance afhine learning meth-
ods, each machine learning method (using the best parasedtiag and pre-processing
technique) was tested using larger numbers of PCs. Eaclotheifis tested for values
of P in the range 1-640. Figure 1 shows the change in error of sdrtteeanethods
versus the number of PCs retained to build the model.

14 - |—&—Linear S¥M
—m— RBF SVM

12 4 |—=&—k-hN
——C45

10 4 | =—PCR

% Classification Error

1 10 100 1000
No. of Principal Components

Fig. 1. Effect of changing the number of PCs on Machine Learning stfigation Error

It can be seen from this graph that as PCs are added, errdrasiyrreduced for all
methods. Most methods require no more than six PCs to acthiedewest error. After
this lowest error point, the behaviour of the methods defmmewhat. Some classifiers
suffer drastic increases in error within the range of PCete$CR, RBF SVM, and
k-NN (although not to the same extent as the previous exanptecontrast, the error
for C4.5 never deviates too much from its lowest error at €8s.PThis may be due to
its ability to prune irrelevant attributes from the decistoee model. The Linear SVM
initially seems to follow the pattern of the majority of cifgers, but then returns to



a more acceptable error with the higher number of PCs. Qyéra evident that all

of the classifiers, apart from PCR, will achieve their bestuaacy with a relatively
small number of PCs; it is probably unnecesary to generatename than twenty PCs.
However, the number of PCs required will depend on the ugiherldataset. Further
experiments on more spectral data, or other examples of dilgknsional data, are
required to determine suitable ranges of PCs for these madbarning methods.

6 Related Research

The most closely related research to the work presented:haree found in Sigurdsson
et al. [16], where they report on the use of neural networks for tbection of skin
cancer based on Raman data that has been reduced using RAachieve PCA using
singular value decomposition (SVD), a method which cakeslall the eigenvectors of
the data matrix, unlike the NIPALS method that was used heraddition, they do not
present any comparison with neural networks on the raw diteout the PCA step.

As far as the authors are aware, few studies have been carridbat investigate
the effect of using PCA with a number of machine learning atgms. Popelinsky [17]
does analyse the effect of PCA (again, eigenvector decaitigrois used) on three dif-
ferent machine learning algorithms (Naive Bayes, C5.0 anidstance-based learner).
In this paper, the principal component scores are addedetottginal attribute data
and he has found this to result in a decrease in error ratdlforedhods on a signifi-
cant number of the datasets. However, the experiments vatigased on particularly
high dimensional datasets. It is also worth noting thatelteres not appear to be any
evidence of the use of NIPALS PCA in conjunction with macHeserning for the clas-
sification of high dimensional data.

7 Conclusions

This paper has proposed the use of an efficient PCA method\UHPo improve the
performance of some well known machine learning methodssrekassification of high
dimensional data. Experiments in the classification of Raspeectra have shown that,
overall, this PCA method improves the performance of maelgarning when dealing
with high dimensional data. Furthermore, through the usP@©A, these low errors
were achieved despite a major reduction of the data; fronotiggnal 1646 attributes
to at least six attributes. Additional experiments haveashthat it is not necessary to
generate more than twenty PCs to find an optimal set for thetispelataset used, as
the performance of the majority of classifiers degrades iitreasing numbers of PCs.
This fact makes NIPALS PCA particularly suited to the praggbapproach, as it does
not require the generation of all PCs of a data matrix, urthikkewidely used eigenvector
decomposition methods. This paper has also shown that éiprpcessing technique
of first derivative followed by normalisation improves therformance of the majority
of these machine learning methods in the classificationefittaset used.

Overall, the use of NIPALS PCA in combination with machinarleing and the first
derivative with normalisation pre-processing technigppears to be a promising ap-
proach for the classification of high dimensional data. Feitwork will involve testing
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this approach on other high dimensional datasets and cteddravestigate the auto-
matic selection of parameters for these techniques, suttieasumber of PCs, kernel
parameters for SVM ankl for k-NN.
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