Trusted Virtual Domains on OpenSolaris:
Usable Secure Desktop Environments

Hans Léhr, Thomas Pdppelmann, Johannes Rave, Martin Steegmanns, Marcel Winandy
Horst Gortz Institute for IT Security
Ruhr-University Bochum, Germany
{hans.loehr, marcel.winandy}@trust.rub.de
{thomas.poeppelmann, johannes.rave, martin.steegmanns}@rub.de

ABSTRACT

Trusted Virtual Domains (TVDs) are a security concept
to create separated domains over virtual and physical plat-
forms. Since most existing TVD implementations focus on
servers and data centers, there are only few efforts on secure
desktop environments. To fill this gap, we present in this pa-
per an implementation of TVDs based on the OpenSolaris
operating system. We leverage several of its existing features
(e.g., lightweight virtualization, security labels and a secure
graphical user interface) and extend OpenSolaris with com-
ponents for automated management and policy enforcement
to create a usable desktop implementation of TVDs. This
includes the transparent encryption of external storage and
home directories of users, restriction of copy-and-paste ac-
cording to the TVD policy, efficient deployment of images
for user environments, and a central management interface
for the administration. Our system enables organizations
to securely separate different work flows with sensitive data
from each other and from untrusted environments.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks|: General—
Security and Protection; D.4.6 [Operating Systems]: Se-
curity and Protection

General Terms
Security

Keywords

TVD, secure desktop, management, OpenSolaris

1. INTRODUCTION

The concept of Trusted Virtual Domains (TVD) [12, 4,
5] allows the enforcement of a common security policy on
a coalition of machines that trust each other based on that
policy. This concept originates from the problem of separat-
ing security-sensitive workloads in data centers using shared

@ ACM, 2010. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the S5th ACM Workshop
on Scalable Trusted Computing (STC 2010).
http://doi.acm.org/10.1145/1867635.1867650

hardware resources. TVDs provide a framework that en-
forces the needed separation transparent to the instances
of different domains on this shared hardware. To support a
highly dynamic virtualized infrastructure, the TVD policy is
defined and managed in an abstract way centrally, whereas
each platform enforces the central policy locally.

Besides data centers, the TVD approach can be extended
to the desktop environment in an enterprise scenario. This
enables to control and restrict the information flow for end-
user systems, e.g., to enforce complex enterprise rights man-
agement policies [11] or to simply separate data of different
workflows with varying security requirements. For example,
in a hospital one domain may be privacy-sensitive patient
records and another one for accounting and billing. In or-
der to separate these different data domains, i.e., to avoid
unauthorized accesses from one to the other domain, each
individual logical task can be migrated into a single TVD
which enforces protection of the data, including encryption
of data stored externally or sent over the network.

While the incorporation of the TVD concept in data cen-
ters [3, 5] can be expected to be available in the near fu-
ture, only few research prototypes address the realization
on desktop systems [7]. However, a practical and usable im-
plementation of TVDs for end-users must focus on a secure
desktop environment and the end-user experience. Hence, in
this paper we aim to answer the question whether it is pos-
sible to transform an off-the-shelve (secure) operating sys-
tem, where users may have already certain experience with,
into a TVD-enforcing platform that is usable for end-users.
For this purpose, we have chosen the OpenSolaris® operating
system because it is freely available, it uses a desktop system
that is known from the popular Linux operating system, and
offers in addition advanced security features of a multi-level
security (MLS) system based on the Trusted Extensions [10],
derived from Trusted Solaris?.

Contribution.
In particular we make the following contributions:

e We present a secure desktop environment for TVDs
based on OpenSolaris (Section 3). We show how to re-
alize separation of data and applications for each TVD
based on the OpenSolaris zone mechanism, and how
to integrate transparent encryption of external stor-
age devices according to a TVD policy.

!See: http://www.opensolaris.org
2See: http://www.sun.com/trustedsolaris/

http://doi.acm.org/10.1145/1867635.1867650
http://www.opensolaris.org
http://www.sun.com/trustedsolaris/

e We describe the details of our implementation (Sec-
tion 4) and show how to map the non-hierarchical
TVD security model to the MLS system of OpenSo-
laris. Our implementation consists of a TVD layer that
is installed as an additional software package on top of
OpenSolaris, and it does not modify the OpenSolaris
kernel nor any of its core security features.

e In contrast to most existing TVD implementations,
our system has a more user-centric focus and offers
the following main advantages: (i) it provides a cen-
tral management of zone images and TVD policies,
which can be easily maintained by an administrator
via a web-based graphical frontend; (ii) it has an auto-
mated mechanism for efficient deployment of zone im-
ages within TVDs; and (iii) it integrates a transparent
encryption of remote and external storage (including
USB memory sticks) and provides an automatic key
management and revocation functionality.

As our system is based on widely deployed and tested code
of OpenSolaris, our solution should be stable and efficient
enough to be accepted by end-users as well as security ad-
ministrators. Our implementation is using standard Open-
Solaris components and will be made available for download
as open source software®.

2. BACKGROUND

2.1 Trusted Virtual Domains

Trusted Virtual Domains (TVDs) [12, 4, 5] have been
developed as a security framework for distributed multi-
domain environments leveraging virtualization and trusted
computing technologies.

In a virtualized environment, virtual machines (VMs) that
share the same physical infrastructure execute operating sys-
tems with different applications and services. Each virtual
machine runs in a logically isolated execution environment,
controlled by an underlying security kernel that acts as vir-
tual machine monitor (VMM). A TVD is a coalition of vir-
tual machines that trust each other, share a common se-
curity policy and enforce it independently of the particular
platform they are running on. In particular, the TVD infras-
tructure provides isolated computing environments, secure
communication and storage, explicit trust relationships, and
transparent policy enforcement within TVDs.

Typically, the central management component is the T'VD
Master, which handles most of the configuration. More-
over, the TVD policies and related cryptographic keys are
distributed to the individual physical platforms. On these
platforms, a TVD Proxy is created for each TVD, which is
the local security service that is responsible for the correct
policy deployment and enforcement. For end-user desktop
systems, the protection of data on external storage devices is
particularly important. To ensure that data is kept securely
isolated within a TVD, all data leaving the TVD infrastruc-
ture has to be encrypted with keys that are controlled by
the TVD Master [8].

To implement a TVD, a secure hypervisor with some form
of trusted computing support is needed. TVDs have been
implemented as research prototypes based on different vir-
tualization technologies [7, 5]. For instance, the research

3See: http://www.trust.rub.de/projects/tvd-solaris

project OpenTC* has experimented with Xen [1] and L4 [13].
They leverage Trusted Computing support based on the
TPM - in particular, to realize an authenticated boot pro-
cess and to integrate attestation functionality of the TPM
to verify the client platform integrity, and for the protection
of cryptographic keys. Commercial products that support
TVDs are becoming available like, e.g., Turaya made by Sir-
rix security technologies®.

The problem with existing TVD implementations is that
they are not directly suitable for a desktop environment,
e.g., they lack a TVD-specific user interface or they require
large virtual machine images to be downloaded. Moreover,
they are not easy to implement [7] and they are not widely
deployed or tested by a large user-base. Ideally, we want
to have an off-the-shelf operating system that can be easily
transformed to a TVD-enforcing platform. However, com-
monly used mainstream operating systems lack support for
essential security functionality, such as isolated execution
environments or secure user interface systems.

2.2 Security Features of OpenSolaris

OpenSolaris is well-suited to realize TVDs because it pro-
vides sophisticated security mechanisms and operating sys-
tem features. In this section, we briefly revisit the most
relevant security features of OpenSolaris.

Zones. The lightweight virtualization technology inte-
grated in OpenSolaris, called zones [14], provides the illu-
sion of exclusive access to the shared resources of a physical
machine. Zones allow users to run different instances of
OpenSolaris sharing the same kernel. This approach lowers
the resource requirements and enables the execution of more
virtualized environments than with full virtualization solu-
tions. As the virtualization is implemented on the operating
system level, only OpenSolaris can be used as host and guest
operating system (however, OpenSolaris also offers a Linux
API). The kernel ensures that from within a zone, it is not
possible to affect processes, filesystems, and users outside of
the zone and that there are no name and resource conflicts
with other zones.

Multi-Level Security. OpenSolaris supports manda-
tory access control (MAC) according to a multi-level security
(MLS) policy [2]. OpenSolaris uses labels [14] to associate
a protection level with data, files and users, and enforces
access decisions based on these labels. Labels consist of two
components: classifications (levels) and compartments (cat-
egories). Access control decisions are taken based on the
dominance order: Label Li dominates label Lo if and only
if the classification of L; is higher or equal to the classifica-
tion of Ly, and the set of compartments of L1 contains all
compartments of L.

To enforce a MAC policy, the OpenSolaris kernel com-
pares the security labels of resources with the label of sub-
jects that request to access these resources. The MAC sys-
tem heavily relies on zones to enforce separation and isola-
tion of data. A global zone is used to manage the system’s
trusted computing base (TCB) which is a specially protected
environment equipped with more privileges and access rights
than other zones.

“See: http://www.opentc.net
®See: http://www.sirrix.com

http://www.trust.rub.de/projects/tvd-solaris
http://www.opentc.net
http://www.sirrix.com

Secure GUI and Trusted Extensions. OpenSolaris
features a multi-level secure GUI desktop which follows the
general principles of [9]. In contrast to other MLS systems,
the GUI is based on the OS-independent Gnome desktop en-
vironment, which is extended with several security-relevant
features. It allows running applications with different secu-
rity levels in parallel and makes them easily identifiable by
displaying a colored stripe on top of each application win-
dow. This information is also displayed in the trusted path
located on the top of the screen, which is important because
users can now easily determine which level of trust a specific
application or part of the system has by moving the mouse
over a specific item. Moreover, it prohibits fake applications
that trick the user into entering sensitive data such as cre-
dentials into untrusted applications. The operating system
ensures that no application is able to overwrite the trusted
stripe to trick the user.

The MLS extension and the secure GUI for OpenSolaris
are provided by the (optional) Trusted FExtensions pack-
age. This package is based on Trusted Solaris, a security-
enhanced version of Solaris 8 with MLS support. The Trust-
ed Extensions assign a specific label to each zone, which
permits to connect a labeled workspace to this particular
zone. Only one zone per label per host is allowed. The com-
munication between different hosts with Trusted Extensions
installed can be secured and isolated by using Commercial
IP Security Option (CIPSO) [14] which labels IP packets.

3. REALIZING TVDS ON OPENSOLARIS

In order to realize TVDs on OpenSolaris, the TVD se-
curity model has to be mapped onto the OpenSolaris MLS
system. Although Trusted Extensions provide network sep-
aration, process isolation, and a secure desktop, the TVD
concept demands more. The problem is to integrate various
TVD policies and a common management into the system to
allow features like transparent encryption of external stor-
age. Moreover, as supposed to be used as a desktop system
for users, a fast deployment and configuration of working
environments is necessary.

The general idea of our architecture is to use the built-in
lightweight virtualization features of OpenSolaris, i.e., the
zones, to separate the different TVDs from each other. The
global zone executes the necessary management code, and
deploys and starts the virtualized environments (zones) rep-
resenting a TVD. Our system relies on the OpenSolaris ker-
nel which enforces and provides security features such as
mandatory and discretionary access control. For intra-TVD
communication, our TVD layer establishes logical links be-
tween the virtualized environments on different platforms
that belong to the same TVD. This logical network is com-
pletely isolated from any network traffic from outside that
TVD, thus establishing secure channels between the TVD
members. The transmission of policies and keys, as well as
management messages, is separated in another logical net-
work which cannot be accessed by any TVD. This manage-
ment network is also used for accessing the network storage
that is provided to every user as persistent storage mecha-
nism. Our architecture is illustrated in Figure 1.

3.1 Separation of Data and Applications

One of the main aspects of TVDs is the separation of data
and program execution and therefore the isolation and me-
diation of access to shared resources. As we rely on OpenSo-

,,,

TVD Layer

[OpenSolaris Kernel

Images | Security Policy
Home-Dirs 72

,,,

TVD Storage Server
Management
O ©= O 8088

Figure 1: Architecture Overview

laris, we can use the security functionality of zones and the
existing MLS-aware desktop, as illustrated in Figure 2. The
image shows the trusted path and two applications running
in two TVDs on the same desktop. To enforce the separa-
tion of the TVDs, we configure the system to forbid copy &
paste data transfers between different TVDs and to notify
the user with a pop-up. In order to support a centrally con-
trolled management of TVDs, we added a management layer
on each platform that dynamically configures the operating
system services as required by the TVD policy.

s CD

O]

Ll

red.txt (~) - gedit (on
Fle Edit View Search Tools Do

.8 e 9

New Open ~ Save Print Undo

Selection Manager

F= Transfer not authorised.
|| ouare not authorised to downgrae tis inormation

Jredbd © Orignal Information New Information
frvo : reg ESERFOEE
e Type: (4 bytes)
Ouner:john Ouner:john

\ Selection

Text editor running in
the context of TVD : RED

Text editor running in
the context of TVD : GREEN

‘Time remaining to complete:

T g

Help Forbidden attempt to copy

and paste data between TVDs
- B

Workspace Selector
NS

o =
green.txt (~) - gedit (... |[7] Selection Manager-

g 9, 1:20PM

=

i
Figure 2: The OpenSolaris Trusted Desktop

To separate the network traffic of different TVDs, we use
labeled IP (CIPSO). This implies that — in contrast to TVD
implementations that virtualize network traffic on ISO/OSI
layer 2 (c.f. [6]) — our TVD framework currently only sup-
ports IP-based network traffic. However, in particular for
desktop environments, support for IP-based network traf-
fic should be sufficient for most application scenarios. The
necessary configuration of IP address ranges, as well as the
restriction of members of a TVD to the corresponding ad-
dress range, is centrally managed by the TVD Master. To
enforce this network policy automatically, we implement a
security service in our TVD layer, which configures virtual
network connections and parameters dynamically whenever
a new TVD is added to the platform.

3.2 Transparent Storage Encryption

Our TVD layer also implements a security service that
transparently encrypts the data stored on external storage.

Moreover, to offer the user a management option for mobile
storage devices (MSD), we add GUI elements to the system.
As we can see in Figure 3, the user is able to label new USB
sticks, i.e. assign them to a TVD, and to remove the device
from the system again. For the users, those are the only
actions they are concerned with, as encryption and manage-
ment of cryptographic keys are handled automatically and
transparently by the TVD layer.

[L L |
New MSD detected
To which TVD should the MSD be assigned?

-

iBlue = J

Cancel oK
— Icon to release

O — USB stick

Click on the device name to safely remove it

rmdisk0
l =

Assign new SB
stick to TVD

Figure 3: Managing mobile storage devices

4. IMPLEMENTATION

In this section, we describe our implementation in detail,
and particularly how we handled the technical challenges
that arise when using a multi-level security operating sys-
tem to realize TVDs by adding and modifying operating
system components. As our framework is a complex sys-
tem we present only the most important key components
that were not straight forward to implement and provide an
important feature of our implementation.

4.1 Labeling

In our TVD implementation, strict isolation of data and
processes is the main goal. We therefore take advantage
of the flexibility of the MLS labeling system by creating a
labeling scheme that only uses and allows disjoint labels to
forbid the transfer and access to data across different zones.
This means that we use one common classification for all
TVDs, as the classifications are strictly ordered and no way
exists to circumvent the ordering.

The separation of TVDs is achieved by introducing a non-
hierarchical relationship in the compartment component of
the labels. Technically, this is done by assigning only one
distinct compartment bit to every TVD which prevents any
ordering and dominance relationship. The limitation of this
approach is that only 240 disjoint compartments, and there-
fore 240 TVDs, can be created due to the internal, limited
set of compartment bits in OpenSolaris.

4.2 User and TVD Management

In contrast to previous TVD implementations, our man-
agement is user-centric and designed for deployment in cen-
trally managed corporate environments on the desktop. User
management is therefore an integral part and we enable
TVD users to log in to any platform assigned to the TVD
infrastructure without prior registration on that platform.
After the login the TVD framework creates the defined soft-
ware environment and allows to access the data permanently
stored by the user.

To achieve this behavior, our current prototype distributes

the passwd and shadow files, which are maintained by the
master server, to the platform on each boot®.

During the development of the management GUI, we fo-
cused on hiding the technical complexity. The administra-
tor does not have to care about choosing the right label
when creating a TVD or remember to create a home direc-
tory on the storage server. All these steps are automatically
performed, which leaves less room for critical mistakes and
lets the administrator focus on the organizational aspects of
TVDs. For example, when administrators want to create a
new TVD, they have only to choose a name, description and
network segment associated with that TVD. When a user is
assigned to a TVD, the user will see the corresponding TVD
as an option to work in during the next login on a computer
that is a member of the TVD framework. The GUI offering
the choice can be seen in Figure 4.

4.3 Policy Distribution and Enforcement

The behavior of our TVD framework (e.g. isolation prop-
erties) is defined in a security policy. When this policy
is applied, our components translate the abstract parts of
the policy into OpenSolaris commands and configurations,
which are enforced by the underlying security subsystems.
We divide the security policy into three parts for efficient dis-
tribution. The Global Policy defines in a client-ready format
the MLS labels we adopted to create the TVDs. Moreover,
it contains the information that allows users to log in on ev-
ery machine that is part of the TVD framework. The Local
Policy is an XML file that is generated after a user has suc-
cessfully logged in. It contains the TVDs available to this
user, the allowed computing environments, network config-
uration and detailed MLS label information. To establish
a secure channel for policy deployment and authentication,
each platform has a Platform Policy, which contains a sym-
metric key that is shared with the master.

As every policy is automatically generated by the master
there is no need for an administrator to edit XML configura-
tion files. Manual work is only needed when a new physical
machine should be added to the TVD system. The adminis-
trator has to install the TVD layer software on the platform
and needs to securely transfer the platform policy, contain-
ing the key used to authenticate the platform, to that host.
Subsequently, all management tasks can be performed with
the web management system on the master. This also pre-
vents the definition of invalid or conflicting policies by an
administrator, as the consistency of the policy is ensured by
the master.

4.4 Protected Computing Environments

Users should be able to work with different software ap-
plications according to the needs of their TVDs. These
software configurations must then be executed in protected
computing environments. In our system, the protected envi-
ronments are based on the concept of zones, and the corre-
sponding software configurations are basically virtual Open-
Solaris user-space images, which can be transferred over the
network. Therefore, these images contain all the software
available to a user inside of a TVD. It is even possible to
allow multiple images for a user which makes it possible to
adapt the images to the needs of the user. For example,

SNote that this is just a prototype implementation. In a real
productive system one would use, e.g., an LDAP server or
similar for user authentication.

when a TVD is used for development, the system can offer
an environment containing a compiler and Integrated De-
velopment Environment (IDE) while the same user has only
access to office and spreadsheet applications in another TVD
used for document management. This approach is also nec-
essary as a zone could not be created on-the-fly as the native
OpenSolaris zone installation process is very slow.

4.4.1 Efficient Zone Image Deployment

To support a wide range of zone environments, we have
designed a system that is able to download zone images dy-
namically from a server, adding a lot of flexibility to that
approach. For performance reasons, the zone images are
cached on the local hard drive and only loaded when neces-
sary. To prevent tampering of zones by an offline adversary
and during transmission, every zone has a unique crypto-
graphically secure hash value associated with it, which en-
sures the integrity of a zone before every boot. The hash
values of the zones that are permitted to run in a TVD
are specified in the local policy. Due to the OpenSolaris
whole-root zone model, which provides the independent ex-
ecution environments, the disk space needed for a zone is up
to 1.4 GB for a standard zone residing in a ZFS” dataset
(and 350 MB as a compressed backup of the dataset). If
every deployed zone had this size, the zone deployment pro-
cess would be too slow and the amount of data to store and
transmit too high to be usable in practice. However, it is
clear that almost every zone will need a base installation
(GUI extension, text editor, common libraries) plus some
smaller modification to adapt them to the TVD use case.

We achieved a considerable reduction of the disk space
occupied by our zone instances by using the ZFS snapshot
and clone functionality. In our implementation, every image
is a snapshot of a zone representing a software configuration
that is defined and authorized by the TVD policy. These
snapshots can have dependencies to allow delta image files
containing only the information that differs from the base
image. This leads to a tree-like organization, supporting
multiple base images which have leaves as well. These leaves
can be further configured into different dependable states.
This relationship is specified by the image ID which consists
of a number specifying the base, a character determining the
leaf that is derived from this specific base, and a number
specifying the snapshot in this leaf.

TVD Name Available Working
& Description Environemnts

Welcome to the '*D Environment. You can now choose the Images for your zones.
. Red: The red TVD

. Blue: The blue TVD office work Environment

Green: The green TVD

Standard Work Envirenment

Developer Work Environment

@ ok |

Figure 4: New GUI for choosing TVD zones

4.4.2 Benefits of Protected Computing Environments

A benefit of this approach is that the administrator has
the ability to upgrade software by specifying a derived image

"ZFS is a special filesystem of OpenSolaris.

that, e.g., contains fixes for a bug found in an application,
and by disallowing the old images. On reboot, the delta im-
age is downloaded by the platform, and the new software can
start without a disruption or long period of waiting for the
user, and without the need for an administrator to get local
access to the platform. This realizes an efficient mechanism
for software management on TVD platforms.

4.5 Protected Remote Home Directories

Our TVD implementation provides automatically encryp-
ted remote home directories. They are of special importance
as there is no possibility to store user data persistently in
our zones. This is due to the fact that we create fresh zones
on each reboot for the purpose of integrity measurement.
Therefore, we combine the Network File System (NFS), en-
abling us to access the home directories over the network,
with loopback devices mounted from a container file. This
mechanism is called lofi and has built-in encryption support
(AES-256), enabling us to store the containers with the user
data on the network and making them available as normal
filesystem to a user on every platform in the TVD system.

When a user logs in to a system, the user’s NF'S share with
the encrypted containers is mounted transparently. How-
ever, the OpenSolaris Trusted Extensions only allow read or
write access on NFS servers with the same label as the zone
they are mounted into. As a result, our TVD framework cre-
ates and labels a special zone on each platform. This zone
hosts the user’s remote share container. Subsequently, lofi
is used to create the decrypted loopback devices, which are
mounted as home directories into the corresponding zones.

To separate the data associated to TVDs, every user has a
different container file for every TVD he or she is a member
of. From outside these containers look like a huge binary
file making it impossible to derive even meta-information or
filenames. Unfortunately, this also introduces the problem
of a fixed storage size, as the containers cannot grow dy-
namically in size. However, this could be resolved by an
automatic mechanism to transfer the data of a container file
into a bigger one when the storage space is not sufficient.

4.6 Mobile Storage Devices

We implement the transparent encryption of mobile stor-
age devices (MSDs) in a similar way as the protected re-
mote home directories. Again lofi loopback devices provide
the required encryption capabilities, but now the contain-
ers reside on a mobile device. Moreover, key retrieval is
more difficult in the mobile scenario as the system does not
know in advance which devices will be plugged into which
platform. Therefore, following the approach of [8], we have
implemented a key download mechanism, which requests the
device key from the master server when needed and trans-
mits it to the platform. In our implementation, all necessary
information needed to retrieve the correct key is embedded
into the device’s XML identification record which is pro-
tected by a cryptographic signature created by the TVD
master. The TVD master also maintains the public and pri-
vate key and handles the distribution of the identification
record onto the platforms. As a consequence, the record’s
signature of every MSD is validated before the key is re-
quested from the master.

4.6.1 Creation and Usage

When new storage devices are introduced into the TVD

system, the user is able to create, depending on the policy,
new encrypted devices. Therefore, the platform generates a
random device ID and requests a signed identification record
and an encryption key from the server. After erasing all
data on the device, a new lofi container is created and saved
together with the signed identification record. The only nec-
essary interaction by the user is to choose the TVD to which
the MSD should be attached to. Subsequently, the device
can be used on all platforms that are connected to the same
master under the condition that a zone of the corresponding
TVD is running. No interaction with the user is needed:
When the user plugs in a device, it automatically appears
as an icon on the desktop and can be used instantly.

4.6.2 Revocation

An inherent issue with mobile storage devices is revoca-
tion, for instance, because they might get lost or the original
creator might have to leave the company. With normal USB
drives, the company has no chance to prevent the exposure
of private or sensitive data to unauthorized entities. To solve
this problem, our master web GUI includes a list of all mo-
bile storage devices in the system. To support auditing of
the use of MSDs, the user who created the device and the
time he created it are stored on the master. This allows an
administrator to identify rogue devices and to revoke them
by deleting their records on the master. As a result, the
platforms can no longer request the decryption key and any
new access to the contents of the MSD becomes impossible.

All these management options are a great benefit since
no user or administrator has to handle keys manually when
working with the TVD framework. Creation of container
files, key management, and validation is automatically han-
dled by the master.

5. CONCLUSION AND FUTURE WORK

In this work, we have shown that it is possible to imple-
ment TVDs for end-user desktop systems based on OpenSo-
laris. Our TVD framework features integrated management
and transparent data encryption, an efficient deployment of
zone images, and puts a particular focus on the ease of ad-
ministration. Our implementation adds a TVD layer to the
OpenSolaris system without any modification of the exist-
ing kernel or core security features. All features described
in this paper can be managed via a central administration
GUI which creates and maintains the TVD policy.

In the future, we plan to make our TVD framework in-
teroperable with existing implementations for data centers,
as they complement each other and could cover many cur-
rent enterprise scenarios. We also plan to integrate Trusted
Platform Module (TPM) support, which our prototype cur-
rently lacks, in order to measure and verify the integrity of
the whole platform from the startup of the kernel to the
deployment of zones. Furthermore, we will investigate the
realization of secure inter-domain information transfer.

6. REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L.
Harris, A. Ho, R. Neugebauer, 1. Pratt, and
A. Warfield. Xen and the art of virtualization. In 19th
ACM Symposium on Operating Systems Principles
(SOSP’03), pages 164-177. ACM Press, 2003.

[2] D. Bell and L. LaPadula. Secure computer systems:
Mathematical foundations. Technical Report

3]

[4]

[6]

7]

8]

(10]

(11]

(12]

(13]

(14]

MTR-2547, Vol 1, MITRE Corp., Bedford, MA, Nov.
1973.

S. Berger, R. Caceres, D. E. Pendarakis, R. Sailer,

E. Valdez, R. Perez, W. Schildhauer, and

D. Srinivasan. TVDc: Managing security in the
trusted virtual datacenter. Operating Systems Review,
42(1):40-47, 2008.

A. Bussani, J. L. Griffin, B. Jansen, K. Julisch,

G. Karjoth, H. Maruyama, M. Nakamura, R. Perez,
M. Schunter, A. Tanner, L. V. Doorn, E. A. V.
Herreweghen, M. Waidner, and S. Yoshihama. Trusted
Virtual Domains: Secure foundations for business and
IT services. Technical Report RC23792, IBM
Research, 2005.

S. Cabuk, C. I. Dalton, K. Eriksson, D. Kuhlmann,
H. V. Ramasamy, G. Ramunno, A.-R. Sadeghi,

M. Schunter, and C. Stiible. Towards automated
security policy enforcement in multi-tenant virtual
data centers. Journal of Computer Security,
18(1):89-121, 2010.

S. Cabuk, C. I. Dalton, H. V. Ramasamy, and

M. Schunter. Towards automated provisioning of
secure virtualized networks. In ACM Conference on
Computer and Communications Security (CCS’07),
pages 235-245. ACM, 2007.

L. Catuogno, A. Dmitrienko, K. Eriksson,

D. Kuhlmann, G. Ramunno, A.-R. Sadeghi, S. Schulz,
M. Schunter, M. Winandy, and J. Zhan. Trusted
Virtual Domains — design, implementation and lessons
learned. In International Conference on Trusted
Systems 2009 (INTRUST 2009). Springer Verlag, Dec.
2009.

L. Catuogno, H. Lohr, M. Manulis, A.-R. Sadeghi, and
M. Winandy. Transparent mobile storage protection in
trusted virtual domains. In 23rd Large Installation
System Administration Conference (LISA’09), pages
159-172. USENIX Association, 2009.

J. Epstein, J. McHugh, H. Orman, R. Pascale,

A. Marmor-Squires, B. Danner, C. R. Martin,

M. Branstad, G. Benson, and D. Rothnie. A high
assurance window system prototype. Journal of
Computer Security, 2(2):159-190, 1993.

G. Faden. Solaris trusted extensions: Architectural
overview, Apr. 2006.

Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger,

M. Winandy, R. Husseiki, and C. Stiible. Flexible and
secure enterprise rights management based on trusted
virtual domains. In 8rd ACM Workshop on Scalable
Trusted Computing (STC’08), pages 71-80. ACM,
2008.

J. L. Griffin, T. Jaeger, R. Perez, R. Sailer, L. van
Doorn, and R. Céaceres. Trusted Virtual Domains:
Toward secure distributed services. In Proceedings of
the 1st IEEE Workshop on Hot Topics in System
Dependability (HotDep’05), June 2005.

J. Liedtke. On micro-kernel construction. In Fifteenth
ACM Symposium on Operating System Principles
(SOSP’95), pages 237-250. ACM Press, 1995.

Sun Microsystems, Inc. Solaris 10 System
Administrator Collection.
http://docs.sun.com/app/docs/coll/47.1671=all.

http://docs.sun.com/app/docs/coll/47.16?l=all

	Introduction
	Background
	Trusted Virtual Domains
	Security Features of OpenSolaris

	Realizing TVDs on OpenSolaris
	Separation of Data and Applications
	Transparent Storage Encryption

	Implementation
	Labeling
	User and TVD Management
	Policy Distribution and Enforcement
	Protected Computing Environments
	Efficient Zone Image Deployment
	Benefits of Protected Computing Environments

	Protected Remote Home Directories
	Mobile Storage Devices
	Creation and Usage
	Revocation

	Conclusion and Future Work
	References

