
Published in A. Elçi, S.B. Ors, and B. Preneel, Eds, Security of Information and Networks, pp. 7–12,
Trafford Publishing, 2008.

On White-Box Cryptography

Marc Joye

Thomson R&D France
Technology Group, Corporate Research, Security Laboratory

1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France
marc.joye@thomson.net

Abstract. White-box cryptography techniques are aimed at protecting
software implementations of cryptographic algorithms against key recov-
ery. They are primarily used in DRM-like applications as a cost-effective
alternative to token-based protections. This paper discusses the relevance
of white-box implementations in such contexts as a series of questions
and answers.

Q1: What is white-box cryptography?

A major issue when dealing with security programs is the protection of “sen-
sitive” (secret, confidential or private) data embedded in the code. The usual
solution consists in encrypting the data but the legitimate user needs to get ac-
cess to the decryption key, which also needs to be protected. This is even more
challenging in a software-only solution, running on a non-trusted host.

White-box cryptography is aimed at protecting secret keys from being dis-
closed in a software implementation. In such a context, it is assumed that the
attacker (usually a “legitimate” user or malicious software) may also control the
execution environment. This is in contrast with the more traditional security
model where the attacker is only given a black-box access (i.e., inputs/outputs)
to the cryptographic algorithm under consideration.

Q2: What is the difference with code obfuscation?

Related and complementary techniques for protecting software implementations
but with different security goals include code obfuscation and software tamper-
resistance. Code obfuscation is aimed at protecting against the reverse engineer-
ing of a (cryptographic) algorithm while software tamper-resistance is aimed at
protecting against modifications of the code.

All these techniques have however in common that the resulting implemen-
tation must remain directly executable.

Q3: How realistic is the white-box threat model?

The traditional (i.e., black-box) threat models for encryption schemes are the
chosen-plaintext attack (CPA) model and the chosen-ciphertext attack (CCA)



model. In the CPA model, the adversary chooses plaintexts and is given the
corresponding ciphertexts; in the CCA model, the adversary chooses ciphertexts
and is given the corresponding plaintexts.

In the white-box threat model, the adversary can get access to the same re-
sources as in the black-box model plus full control of the encryption/decryption
software. The goal of the adversary is to extract the key. One may wonder
why such a scenario makes sense since an adversary controlling the encryp-
tion/decryption software can make use of it to encrypt or decrypt arbitrary data
without needing to extract the keys. We note that a white-box implementation
can be useful as it forces the user to use the software at hand.1 Furthermore,
other security measures can be used concurrently.

If an adversary could recover the decryption key, then the data could be
decrypted and used with any software on any host (cf. BORE attacks— break
once, run everywhere). This would allow a global crack with more severe dam-
ages.

Q4: What are the applications of white-box cryptography?

The main application of white-box cryptography is the secure distribution of
“valuable” content such as in digital rights management (DRM) applications.
Here the main goal is to prevent the unauthorized use of bulk data processed by
software, like music or movies.

More surprisingly, white-box techniques also allow the development of “light-
weight” cryptography —note that only the private operation is “light”, for ex-
ample:

Converting a secret-key encryption into a public-key encryption
It is easy (in principle) to construct a public-key encryption scheme from
a white-box implementation of a secret-key encryption algorithm EK , say
WB(EK). Anyone in possession of WB(EK) can encrypt messages while only
one possessing secret key K is able to decrypt using decryption algorithm
EK

−1.

Note: To be valid, this transformation requires that EK and EK
−1 are different.

One should also ensure that the release of WB(EK) does not contradict the usual

security properties, like one-wayness or better, semantic security.

Transforming a MAC into a digital signature
Dual to above, a (keyed) message authentication code (MACK) scheme can
be used to produce a digital signature. Being given secret-key K, one can
compute a signature using MACK on any message; further, using a public
(and certified) white-box implementation of the “verification” algorithm, say
WB(MACK

−1), anyone can verify the validity of signatures. Contrary to
1 We also note that external encodings can be used so that the encryption (respectively,

decryption) software requires encoded inputs and produces encoded outputs. As a
result, the white-box implementation cannot be used for evaluating the encryption
algorithm (respectively, decryption algorithm) in isolation. See Q5.



traditional MAC constructs, the verification does not require the knowledge
of secret K.

Note: Again, in order to satisfy the non-repudiation property, one must assume

that the operations of computing and verifying a “MAC” are different. Using a

cryptographic hash function h, if EK and EK
−1 are different, a signature on mes-

sage m can e.g. be produced as S = EK(h(m)); its correctness can then verified

with WB(EK
−1) by checking whether WB(EK

−1)(S) is equal to h(m).

Q5: What is the general methodology behind white-box
implementations?

The main idea of white-box implementations is to rewrite a key-instantiated
version so that all information related to the key is “hidden”. In other words,
for each secret key, a key-customized software is implemented so that the key
input is unnecessary.

Most symmetric block-ciphers, including the AES and the DES, are imple-
mented using substitution boxes and linear transformations. Imagine that such
a cipher is white-box implemented as a huge lookup table taking on input any
plaintext and returning the corresponding ciphertext for a given key. Observe
that this white-box implementation has exactly the same security as the same
cipher in the black-box context: the adversary learns nothing more than pairs
of matching plaintexts/ciphertexts. Typical plaintexts being 64-bit or 128-bit
values, such an ideal approach cannot be implemented in practice.

Current white-box implementations apply the above basic idea to smaller
components. They represent each component as a series of lookup tables and
insert random input- and output bijective encodings to introduce ambiguity, so
that the resulting algorithm appears as the composition of a series of lookup
tables with randomized values.

To add further protection, external (key-independent) encodings may be
used by replacing the encryption function EK (respectively, decryption func-
tion EK

−1) with the composition E′
K = G ◦ EK ◦ F−1 (respectively, E′

K
−1 =

F ◦ EK
−1 ◦ G−1). Input encoding function F and output decoding function

G−1 (respectively, G and F−1) should not be made available on the platform
that computes E′

K (respectively, E′
K
−1) so that the white-box implementation

cannot be used to compute EK (respectively, EK
−1). Although the resulting

implementation is not standard, such an approach is reasonable for many DRM
applications.

Q6: Are there alternatives to white-box cryptography?

Tamper-resistant tokens (e.g., smart cards) also help in preventing key recovery
attacks. Typically, cryptographic keys are stored in the non-volatile memory of
the token and cryptographic computations take place inside the token. Such a
token may therefore be viewed as a black-box device. Unfortunately, things are
not so easy: they are susceptible to the so-called side-channel attacks.



The corresponding threat model is sometimes referred to as grey-box cryp-
tography. The adversary has access to the inputs and outputs of the crypto-
algorithm plus extra side-channel information. The fact that the adversary may
have the device in his possession means that he can run a series of experiments
and collect information like the running time, the power consumption or the
electromagnetic radiation, from which he may infer the secret key. Those attacks
are now well understood and efficient (hardware/software) countermeasures are
available in recent smart-card implementations.

Grey-box cryptography also encompasses physical attacks (e.g., probing) and
fault attacks. In the latter case, an adversary may induce faults and try to recover
secret information from the faulty output. Again, there are known protections
against those attacks, including sensors (hardware level) and space/time redun-
dancy (hardware or software level).

Note that all the attacks available in the grey-box context are readily appli-
cable —and easier to mount— in the white-box context.

Q7: What are the pros and cons?

Without considering security issues, we list below the advantages of white-box
solutions compared to hardware-based solutions. Security aspects are discussed
in the next section.

Advantages White-box solutions
– are cost-efficient : they are easy to distribute and to install;
– are easily renewable: if a security flaw is discovered, updating the soft-

ware or distributing patches can be done remotely.
Disadvantages White-box solutions

– are orders of magnitude slower and require more resources (e.g., memory,
processing power, etc);

– are restricted to symmetric-key cryptography: there are no known white-
box implementations of public-key algorithms.

Q8: How secure are white-box implementations?

There is no complete system that is absolutely secure (and that will never be
the case). A system is said secure relatively to a security model: one defines the
adversary goal (e.g., recovering a key) and the resources the adversary has access
to (e.g., oracle decrypting chosen ciphertexts — CCA model).

In the white-box context, it is much more difficult to define the resources of
an attacker as they are virtually endless. The best we can hope is to prevent all
known relevant threats, in an effective way. The security is highly dependent on
the implementation: there is no need to use strong cryptographic algorithms if
they are poorly implemented. Furthermore, white-box implementations are also
more sensitive to known attacks; in particular, they are prone to fault attacks.



Concluding Remarks & Open Problems

Most reported attacks exploit software security flaws and not weaknesses in
cryptographic algorithms. This implies that software protection deserves a higher
consideration: the threats related to the white-box context should be addressed
carefully in the design process of secure applications.

There are currently no fully satisfying solutions for implementing a standard
block-cipher in the white-box context (all known proposals are more or less bro-
ken). Progresses should be made to provide higher resistance. In some cases, the
situation is even worse; we quote two open problems in white-box cryptography:

– the dynamic case: when keys are frequently changing over time; and
– the public-key case: when public-key techniques are used (e.g., for key ex-

change, digital signatures, . . . ).

In those two cases, there are no known solutions; only token-based schemes are
available for building security in the white-box context.

White-box implementations cannot be used alone as a protection against
key recovery attacks, they should be used in conjunction with other techniques
(including non-technical ones). White-box cryptography is still in its early days
and requires further research before being widely adopted in commercial prod-
ucts. Grey-box implementations (i.e., token-based solutions) should be preferred
—when relevant— as they are more mature: they have a longer history and
have undertaken peer evaluation and public scrutiny. Another point against the
widespread use of white-box techniques is the penalty cost they may incur: they
are orders of magnitude slower and require more resources.2 On the plus side,
we remark that certain techniques of white-box cryptography could be used to
improve the security of grey-box implementations against active implementation
attacks (e.g., fault attacks). Finally, we remind that security comes at cost and,
as a corollary, cannot (should not) be perfect. The appropriate security level
is dictated by the application (the value of what needs to be protected), the
environment (i.e., the threat model) and the costs to develop the corresponding
security solution.

Acknowledgments

I am grateful to B. Preneel and B. Wyseur for sending a copy of [7]. I am also
grateful to O. Billet, E. Diehl, and C. Salmon-Legagneur for comments.

References

1. J. Algesheimer, C. Cachin, J. Camenisch, and G. Karjoth. Cryptographic security
for mobile code. In 2001 IEEE Symposium on Security & Privacy, pages 2–11,
IEEE Press, 2001.

2 This should however be of lesser concern as technologies are evolving. We also admit
that the impacts on performance are not that dramatic in certain contexts.



2. J. Bringer, H. Chabanne, and E. Dottax. White-box cryptography: Another at-
tempt. Cryptology ePrint Archive, Report 2006/468, December 2006. Available
at URL http://eprint.iacr.org/2006/468.

3. O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a white-box AES im-
plementation. In Selected Areas in Cryptography − SAC 2004, volume 3357 of
Lecture Notes in Computer Science, pages 227–240. Springer, 2004.

4. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K.
Yang. On the (im)possibility of obfuscating programs. In Advances in Cryptology
− CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
1–18. Springer, 2001.

5. S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot. White-box cryptography
and an AES implementation. In Selected Areas in Cryptography − SAC 2002,
volume 2595 of Lecture Notes in Computer Science, pages 250–270. Springer,
2003.

6. S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot. A white-box DES imple-
mentation for DRM applications. In Digital Rights Management − DRM 2002,
volume 2696 of Lecture Notes in Computer Science, pages 1–15. Springer, 2003.

7. J. Cappaert, B. Wyseur, and B. Preneel. Software security techniques. Internal
report, COSIC, Katholieke Universiteit Leuven, October 2004.

8. Louis Goubin, Jean-Michel Masereel , and Michael Quisquater. Cryptanalysis of
white box DES implementations. Cryptology ePrint Archive, Report 2007/035,
February 2007. Available at URL http://eprint.iacr.org/2007/035.

9. M. Jacob, D. Boneh, and E.W. Felten. Attacking an obfuscated cipher by injecting
faults. In Digital Rights Management − DRM 2002, volume 2696 of Lecture Notes
in Computer Science, pages 16–31. Springer, 2003.

10. H.E. Link and W.D. Neumann. Clarifying obfuscation: Improving the security of
white-box DES. In International Conference on Information Technology: Coding
and Computing − ITCC 2005, volume 1, pages 679–684. IEEE Press, 2005. Also
available as Cryptology ePrint Archive, Report 2004/025, January 2004 at URL
http://eprint.iacr.org/2004/025.

11. A. Main and P.C. van Oorschot. Software protection and application security:
Understanding the battleground. International Course on State of the Art and
Evolution of Computer Security and Industrial Cryptography, Heverlee, Belgium,
June 2003.

12. A.J. Menezes, P.C. van Oorschot, and S.A.Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 1997.

13. T. Sander and C.F. Tschudin. Towards mobile cryptography. In 1998 IEEE Sym-
posium on Security & Privacy, pages 215–224, IEEE Press, 1998.

14. P.C. van Oorschot. Revisiting software protection. In Information Security − ISC
2003, volume 2851 of Lecture Notes in Computer Science, pages 1–13. Springer,
2003.

15. Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Cryptanal-
ysis of white-box DES implementations with arbitrary external encodings.
Cryptology ePrint Archive, Report 2007/104, March 2007. Available at URL
http://eprint.iacr.org/2007/104.


