
City University of New York (CUNY)
CUNY Academic Works

Computer Science Technical Reports The Graduate Center

2012

TR-2012001: Algebraic Algorithms
Ioannis Z. Emiris

Victor Y. Pan

Elias P. Tsigaridas

Follow this and additional works at: http://academicworks.cuny.edu/gc_cs_tr

Part of the Computer Sciences Commons

This Technical Report is brought to you by CUNY Academic Works. It has been accepted for inclusion in Computer Science Technical Reports by an
authorized administrator of CUNY Academic Works. For more information, please contact AcademicWorks@gc.cuny.edu.

Recommended Citation
Emiris, Ioannis Z.; Pan, Victor Y.; and Tsigaridas, Elias P., "TR-2012001: Algebraic Algorithms" (2012). Computer Science Technical
Reports. Paper 361.
http://academicworks.cuny.edu/gc_cs_tr/361

http://academicworks.cuny.edu?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://academicworks.cuny.edu/gc_cs_tr?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://academicworks.cuny.edu/gc?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://academicworks.cuny.edu/gc_cs_tr?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://academicworks.cuny.edu/gc_cs_tr/361?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F361&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AcademicWorks@gc.cuny.edu%3E

ALGEBRAIC ALGORITHMS1

Ioannis Z. Emiris
Department of Informatics and Telecommunications,
University of Athens, Athens 15784, Greece. emiris@di.uoa.gr

Victor Y. Pan
Mathematics and Computer Science Department, Lehman College,
City University of New York, Bronx, NY 10468, USA. vpan@lehman.cuny.edu.
http://comet.lehman.cuny.edu/vpan/

Elias P. Tsigaridas
Project PolSys, INRIA Paris-Rocquencourt, UPMC & LIP6 CNRS, Paris, France.
elias@polsys.lip6.fr

1 Introduction

This is a preliminary version of a Chapter on Algebraic Algorithms in the up-
coming Computing Handbook Set Computer Science (Volume I), CRC Press/Taylor
and Francis Group.

Algebraic algorithms deal with numbers, vectors, matrices, polynomials, for-
mal power series, exponential and differential polynomials, rational functions,
algebraic sets, curves and surfaces. In this vast area, manipulation with matri-
ces and polynomials is most fundamental for modern computations in Sciences,
Engineering, and Signal and Image Processing. They include the solution of
a polynomial equation and linear and polynomial systems of equations, uni-
variate and multivariate polynomial evaluation, interpolation, factorization and
decompositions, rational interpolation, computing matrix factorization and de-
compositions (which in turn include various triangular and orthogonal factor-
izations such as LU, PLU, QR, QRP, QLP, CS, LR, Cholesky factorizations and
eigenvalue and singular value decompositions), computation of the matrix char-
acteristic and minimal polynomials, determinants, Smith and Frobenius normal
forms, ranks, and (generalized) inverses, univariate and multivariate polynomial
resultants, Newton’s polytopes, greatest common divisors, and least common
multiples as well as manipulation with truncated series and algebraic sets.

Such problems can be solved based on the error-free symbolic computa-
tions with infinite precision. The computer library GMP and computer algebra

1This material is based on work supported in part by the European Union through Marie-
Curie Initial Training Network “SAGA” (ShApes, Geometry, Algebra), with FP7-PEOPLE
contract PITN-GA-2008-214584 (first author), by NSF Grant CCF-1116736 and PSC CUNY
Awards 63153–0041 and 64512–0042 (second author), by the Danish Agency for Science,
Technology and Innovation (postdoctoral grant), Danish NRF and NSF of China (grant
61061130540), CFEM, and the Danish Strategic Research Council (third author). Sections
3.5, 5, 6 and “Further comments” have been written jointly by all authors, Section 4 by the
first author, the other sections by the second author.

1

systems such as Maple and Mathematica compute the solutions based on var-
ious nontrivial computational techniques such as modular computations, the
Euclidean algorithm and continuous fraction approximation, Hensel’s and New-
ton’s lifting, Chinese Remainder algorithm, elimination and resultant methods,
and Gröbner bases computation. The price for the achieved accuracy is the
increase of the memory space and computer time supporting the computations.

The alternative numerical methods rely on operations with binary or dec-
imal numbers truncated or rounded to a fixed precision. Operating with the
IEEE standard floating point numbers represented with single or double preci-
sion enables much faster computations using much smaller memory but requires
theoretical and/or experimental study of the impact of rounding errors on the
output. The study involves forward and backward error analysis, linear and
nonlinear operators, and advanced techniques from approximation and pertur-
bation theories. As necessary, more costly computations with extended precision
are included. The resulting algorithms support high performance libraries and
packages of subroutines such as Matlab, NAG SMP, LAPACK, ScaLAPACK,
ARPACK, PARPACK, MPSolve, and EigenSolve.

This is a preliminary version of a Chapter in the upcoming Computing Hand-
book Set Computer Science (Volume I), CRC Press/Taylor and Francis Group.
In this Chapter we cover both approaches, whose combination frequently in-
creases their power and enables more effective computations. We focus on the
algebraic algorithms in the large, popular and highly important fields of matrix
computations and root-finding for univariate polynomials and systems of mul-
tivariate polynomials. We cover part of these huge subjects and include some
bibliography for further study. To meet space limitation we cite books, surveys,
and comprehensive articles with pointer to further references, rather than the
original technical papers. Our expositions in Sections 2 and 3 largely follow the
line of the first surveys in this area in [158, 163, 168, 169, 170].

We state the complexity bounds under the random access machine (RAM)
model of computation [1, 94]. In most cases we assume the arithmetic model,
that is we assign a unit cost to addition, subtraction, multiplication, and division
of real numbers, as well as to reading or writing them into a memory location.
This model is realistic for computations with a fixed (e.g., the IEEE standard
single or double) precision, which fits the size of a computer word, and then
the arithmetic model turns into the word model [94]. In other cases we proceed
with extended precision and assume the Boolean or bit model, assigning the unit
cost to every Boolean or bitwise operation. This accounts for both arithmetic
operations and the length (precision) of the operands. We denote the bounds
on this complexity by OB(·). We specify whether we use the arithmetic, word,
or Boolean model unless this is clear from the context.

We write ops for “arithmetic operations”, “log” for “log2” unless specified
otherwise, and ÕB(·) to show that we are ignoring the logarithmic factors.

2

2 Matrix Computations

Matrix computations is the most popular and highly important area of scientific
and engineering computing. Most frequently they are performed numerically,
with rounding the input to the IEEE standard single or double precision.

In the chapter of this size we must omit or just barely touch many important
subjects of this field. The reader can find further material and bibliography in
the surveys [158, 163] and the books [6, 8, 21, 56, 61, 64, 100, 107, 173, 217, 222,
234] and for more specific subject areas in [6, 100, 217, 222, 232, 234] on eigende-
composition and SVD, [8, 56, 61, 100, 107, 217, 222] on other numerical matrix
factorizations, [23, 126] on the over- and under-determined linear systems, their
least-squares solution, and various other numerical computations with singular
matrices, [103] on randomized matrix computations, [111, 173] on structured
matrix computations, [21, 100, 167, 205] on parallel matrix algorithms, and
[43, 46, 66, 67, 94, 95, 112, 113, 164, 167, 196, 178, 221, 233] on “Error-free
Rational Matrix Computations”, including computations in finite fields, rings,
and semirings that produce solutions to linear systems of equations, matrix in-
verses, ranks, determinants, characteristic and minimal polynomials, and Smith
and Frobenius normal forms.

2.1 Dense, Sparse and Structured Matrices.
Their Storage and Multiplication by Vectors

An m × n matrix A = [ai,j , i = 1, . . . , m; j = 1, . . . , n] is also denoted
[ai,j]

m,n
i,j=1 and [A1 | . . . | Am]; it is a 2-dimensional array with the (i, j)th entry

[A]i,j = ai,j and the jth column Aj. AT is the transpose of A. A is a column
vector if n = 1 and a row vector if m = 1. v = [vi]ni=1 is an nth dimensional
column vector. The straightforward algorithm computes the product Av in
(2n − 1)m ops; this is optimal for general (dense unstructured) m × n matrix,
represented with its entries, but in actual computations matrices are frequently
special and are represented with much fewer than mn parameters. A matrix is
singular if its product by some vectors vanish; they form its null space.

An m × n matrix is sparse if it is filled mostly with zeros, having only
φ = o(mn) nonzero entries. An important class is the matrices associated
with graphs that have families of small separators [99, 130]. This includes
banded matrices [bi,j]i,j with a small bandwidth 2w + 1 such that bi,j = 0 unless
|i − j| ≤ w. A sparse matrix can be stored economically by using appropriate
data structures and can be multiplied by a vector fast, in 2φ − m ops. Sparse
matrices arise in many important applications, e.g., to solving ordinary and
partial differential equations (ODEs and PDEs) and graph computations.

n×n dense structured matrices are usually defined by O(n) parameters and
can be multiplied by a vector by using O(n logn) or O(n log2 n) ops based on
FFT [173]. Such matrices are omnipresent in computations in signal and image
processing, coding, ODEs, PDEs, particle simulation, and Markov chains. Most

3

popular among them are Toeplitz matrices T = [ti,j]
m,n
i,j=1 and Hankel matrices

H = [hi,j]
m,n
i,j=1, ti,j = ti+1,j+1, hi,j = hi+1,j−1 for all i and j in the range

of their definition. Each such a matrix is defined by m + n − 1 entries of its
first row and first (or last) column. Tv and Hv can be equivalently written
as polynomial products or vector convolutions; their FFT-based computation
takes O((m + n) log(m + n)) ops per product [1, 21, 173]. Many other funda-
mental computations with Toeplitz and other structured matrices can be linked
to polynomial computations enabling acceleration in both areas of computing
[17, 18, 19, 20, 21, 24, 79, 83, 146, 147, 148, 163, 167, 173, 181, 202, 203]. Sim-
ilar properties hold for Vandermonde matrices V = [vj

i]
m−1,n−1
i,j=0 and Cauchy

matrices C = [1
si−tj i,j

]m,n
i,j=1 for m + n distinct scalars si and tj .

The structures of Hankel, Bézout, Sylvester, Frobenius (companion), Van-
dermonde, and Cauchy matrices can be extended to more general classes of ma-
trices via associating linear displacement operators. (See [21, 173] for the details
and the bibliography.) m×n rank structured matrices (also called semiseparable
and quasiseparable) generalize banded matrices; they are expressed via O(m+n)
parameters and are multiplied by vectors in O(m + n) ops [226].

2.2 Matrix Multiplication, Factorization, Randomization

The straightforward algorithm computes the m×p product AB of m×n by n×p
matrices by using 2mnp − mp ops, which is 2n3 − n2 if m = n = p. This upper
bound is not sharp. Strassen decreased it to O(n2.81) ops in 1969. His record was
broken in [157] and about 10 times afterward, most recently by Coppersmith and
Winograd in [47], Stothers in [219], and Vasilevska Williams in [229], who use
Cnω ops for ω < 2.376, ω < 2.374 and ω < 2.3727, respectively. Due to the huge
overhead constants C, however, we have Cnω < 2n3 only for enormous values n.
The well recognized group-theoretic techniques [48] enable a distinct description
of the matrix multiplication algorithms, but so far have only supported the
same upper bounds on the complexity as the preceding works. [219] and [229]
extend the algorithms of the paper [47], which in turn combines its technique of
arithmetic progression with the previous advanced techniques. Each technique,
however, contributes a dramatic increase of the overhead constant that makes
the resulting algorithms practically noncompetitive.

The only exception is the trilinear aggregating of [156] (cf. [158]), which
alone supports the exponent 2.7753 [124] and together with the Any Precision
Approximation (APA) techniques of [158] was an indispensable ingredient of all
algorithms that have beaten Strassen’s exponent 2.81 of 1969. The triple prod-
uct property (TPP), which is the basis of [48], may very well have a natural
link to trilinear aggregating, although the available descriptions of the two ap-
proaches are distinct. For matrices of realistic sizes the numerical algorithms in
[115], relying on trilinear aggregating, use about as many ops as the algorithms
of Strassen 1969 and Winograd 1971 but need substantially less memory space
and are more stable numerically.

The researchers working on the Theory of Computing are quite interested in

4

decreasing the exponent ω of matrix multiplication because O(nω) or O(nω log n)
bounds the complexity of many important matrix computations such as the
computation of det A, the determinant of an n×n matrix A; its inverse A−1

(where det A �= 0); its characteristic polynomial cA(x) = det(xI −A) and
minimal polynomial mA(x), for a scalar variable x; the Smith and Frobenius
normal forms; the rank, rank A; a submatrix of A having the maximal rank, the
solution vector x = A−1 v to a nonsingular linear system of equations A x = v,
and various orthogonal and triangular factorizations of the matrix A, as well as
some fundamental computations with singular matrices and seemingly unrelated
combinatorial and graph computations, e.g., pattern recognition or computing
all pair shortest distances in a graph [21, p. 222] or its transitive closure [1].
Consequently, all these operations use O(nω) ops where theoretically ω < 2.3727
[1, chap.6], [21, chap. 2]. In computational practice, however, the solution of
all these problems takes the order of n3 ops, because of the huge overhead con-
stant C in all known algorithms that multiply n × n matrices in Cnω ops for
ω < 2.775, the overhead of the reduction to matrix multiplication, the memory
space requirements, and numerical stability problems [100].

Moreover, the straightforward algorithm for matrix multiplication remains
the users’ choice because it is highly effective on multiprocessors using the advan-
tages of parallelism and pipelining [100, 205]; on many computers it supersedes
even the so called “superfast” algorithms, which multiply a pair of n× n struc-
tured matrices in nearly linear arithmetic time, namely, by using O(n logn) or
O(n log2 n) ops, where both input and output matrices are represented with
their short generator matrices having O(n) entries [173].

Practical effectiveness of matrix multiplication motivates reduction to it of
numerous tasks important in computational practice; it is also a reason for
the advance of block matrix algorithms (called level-three BLAS, which is the
acronym for Basic Linear Algebra Subprograms).

Devising asymptotically fast matrix multipliers, however, had independent
technical interest. E.g., trilinear aggregating was a nontrivial decomposition
of the 3-dimensional tensor associated with matrix multiplication, and [156]
was the first of now numerous examples where nontrivial tensor decompositions
enable dramatic acceleration of important matrix computations [121, 133, 155].

The two basic techniques below extend matrix multiplication. Hereafter O
denotes matrices filled with zeros; I is the square identity matrices, each has
ones on the diagonal and zeros elsewhere.

Suppose we seek the Krylov sequence or Krylov matrix [Biv]k−1
i=0 for an n×n

matrix B and an n-dimensional vector v [100, 101, 233]; in block Krylov com-
putations the vector v is replaced by a matrix. The straightforward algorithm
uses (2n−1)n(k−1) ops, that is about 2n3 for k = n. An alternative algorithm
first computes the matrix powers

B2, B4, B8, . . . , B2s

, s = � log k � − 1 ,

and then the products of n×n matrices B2i

by n×2i matrices, for i = 0, 1, . . . , s:

B v ,

5

B2 [v, Bv] =
[

B2v, B3v
]

,

B4
[
v, Bv, B2v, B3v

]
=

[
B4v, B5v, B6v, B7v

]
,

...

The last step completes the evaluation of the Krylov sequence in 2s + 1 matrix
multiplications, by using O(nω logk) ops overall.

Special techniques for parallel computation of Krylov sequences for sparse
and/or structured matrices A can be found in [165]. According to these tech-
niques, Krylov sequence is recovered from the solution of the associated linear
system (I − A) x = v, which is solved fast in the case of a special matrix A.

Another basic idea of matrix algorithms is to represent the input matrix A
as a block matrix and to operate with its blocks rather than entries. E.g., one
can compute detA and A−1 by first factorizing A as a 2 × 2 block matrix,

A =
[

I O
A1,0A

−1
0,0 I

][
A0,0 O
O S

] [
I A−1

0,0A0,1

O I

]
(1)

where S = A1,1 − A1,0A
−1
0,0A0,1. The 2 × 2 block triangular factors are readily

invertible, detA = (detA0,0) detS and (BCD)−1 = D−1C−1B−1, and so the
cited tasks for the input A are reduced to the same tasks for the half-size ma-
trices A0,0 and S. It remains to factorize them recursively. The northwestern
blocks (such as A0,0), called leading principal submatrices, must be nonsingular
throughout the recursive process, but this property holds for the highly impor-
tant class of symmetric positive definite matrices A = CT C, detC �= 0, and can
be also achieved by means of symmetrization, pivoting, or randomization [1,
chap. 6], [21, chap. 2], [173, sects. 5.5 and 5.6]). Recursive application of (1)
should produce the LDU factorization A = LDU where the matrices L and UT

are lower triangular and D diagonal. Having this factorization computed , we
can readily solve linear systems Axi = bi for various vectors bi, by using about
2n2 ops for each i, rather than 2

3
n3 + O(n2) in Gaussian elimination.

Factorizations (including PLU, QR, QRP, QLP, CS, LR, Cholesky factor-
izations and eigenvalue and singular value decompositions) are the most basic
tool of matrix computations (see, e.g., [217]), recently made even more power-
ful with randomization (see [103, 180, 182, 187, 188, 189, 190, 192], and the
bibliography therein). It is well known that random matrices tend to be non-
singular and well conditioned (see, e.g., [212]), that is to lie far from singular
matrices and therefore [100, 107, 217] to be suitable for numerical computations.
The solution x = A−1b of a nonsingular linear system Ax = b of n equations
can be obtained with a precision pout in OB̃(n3p + n2pout) Boolean time for a
fixed low precision p provided the matrix A is well conditioned; that accelerates
Gaussian elimination by order of magnitude for large n + pout and is optimum
up to polylog factor as n + pout → ∞. Recent randomization techniques in
[103, 180, 182, 187, 188, 189, 190, 192] extend this property to much larger class
of linear systems and enhance the power of various other matrix computations
with singular or ill conditioned matrices, e.g., their approximation by low-rank

6

matrices, computing a basis for the null space of a singular matrix, and ap-
proximating such bases for nearly singular matrices. Similar results have been
proved for rectangular and for Toeplitz matrices.

2.3 Solution of linear systems of equations

The solution of a linear system of n equations, Ax = b is the most frequent oper-
ation in computational practice and is highly important theoretically. Gaussian
elimination solves such a system by applying (2/3)n3 + O(n2) ops.

Both Gaussian elimination and (Block) Cyclic Reduction use O(nw2) ops for
banded linear systems with bandwidth O(w). One can solve rank structured
linear systems in O(n) ops [226]; generalized nested dissection uses O(n1.5) flops
for the inputs associated with small separator families [130, 164, 196].

Likewise, we can dramatically accelerate Gaussian elimination for dense
structured input matrices represented with their short generators, defined by
the associated displacement operators. This includes Toeplitz, Hankel, Vander-
monde, and Cauchy matrices as well as matrices with similar structures. The
MBA divide-and-conquer “superfast” algorithm (due to Morf 1974/1980 and
Bitmead and Anderson 1980) solves nonsingular structured linear systems of
n equations in O(n log2 n) ops by applying the recursive 2 × 2 block factoriza-
tion (1) and preserving matrix structure [21, 173, 185, 199]. In the presence
of rounding errors, however, Gaussian elimination, the MBA and Cyclic Re-
duction algorithms easily fail unless one applies pivoting, that is interchanges
the equations (and sometimes unknowns) to avoid divisions by absolutely small
numbers. A by-product is the factorization A = PLU or A = PLUP ′, for lower
triangular matrices L and UT and permutation matrices P and P ′.

Pivoting, however, takes its toll. It “usually degrades the performance” [100,
page 119] by interrupting the string of arithmetic computations with the foreign
operations of comparisons, is not friendly to block matrix algorithms and updat-
ing input matrices, hinders parallel processing and pipelining, and tends to de-
stroy structure and sparseness, except for the inputs that have Cauchy-like and
Vandermonde-like structure. The latter exceptional classes have been extended
to the inputs with structures of Toeplitz/Hankel type by means of displacement
transformation [162, 173]. The users welcome this numerical stabilization, even
though it slows down the MBA algorithm by a factor of n/ log2 n, that is from
“superfast” to “fast”, which is still by a factor of n faster than the solution for
general unstructured inputs, which takes order n3 ops.

Can we avoid pivoting in numerical algorithms with rounding for general,
sparse and structured linear systems to achieve both numerical stability and
superfast performance? Yes, for the important classes where the input matri-
ces A = (aij)i,j are diagonally dominant, that is |aii| >

∑
i �=j |aij| or |aii| >∑

j �=i |aij| for all i, or symmetric positive definite, that is A = CT C for a nonsin-
gular matrix C. To these input classes Gaussian elimination, Cyclic Reduction,
and the MBA algorithm can be safely applied with rounding and with no piv-
oting. For some other classes of sparse and positive definite linear systems,
pivoting has been modified into nested dissection, Markowitz heuristic rule, and

7

other techniques that preserve sparseness during the elimination yielding faster
solution causing no numerical problems [61, 98, 130, 164, 196].

Can we extend these benefits to other input matrix classes?
Every nonsingular linear system A x = b is equivalent to the symmetric

positive definite ones AT A x = ATb and A ATy = b where x = Ay, but great
caution is recommended in such symmetrizations because the condition number
κ(A) = ||A||2||A−1||2 ≥ 1 is squared in the transition to the matrices AT A and
AAT , which means growing propagation and magnification of rounding errors.

There are two superior directions.
The algorithms of [189, 190, 193] avoid pivoting for general and structured

linear systems by applying randomization. These techniques are recent, but
their effectiveness has formal and experimental support.

A popular classical alternative to Gaussian elimination is the iterative so-
lution, e.g., by means of the Conjugate Gradient and GMRES algorithms [10,
100, 101, 228]. They compute sufficiently long Krylov sequences (defined in the
previous section) and then approximate the solution with linear combinations∑

i ciA
ib or

∑
i ci(AT A)iAT b for proper coefficients ci. The cost of computing

the product of the matrix A or AT A by a vector is dominant, but it is small
for structured and sparse matrices A. One can even call a matrix sparse or
structured if and only if it can be multiplied by a vector fast.

Fast convergence to the solution is critical. It is not generally guaranteed
but proved for some important classes of input matrices. The major challenge
are the extension of these classes and the design of powerful methods for special
input classes, notably multilevel methods (based on the algebraic multigrid) [145,
136, 195] and tensor decompositions [155, 121], highly effective for many linear
systems arising in discretization of ODEs, PDEs, and integral equations.

Preconditioning of the input matrices at a low computational cost accelerates
convergence of iterations for many important classes of sparse and structured
linear systems [10, 101], and more recently, based on randomized precondition-
ing, for quite general as well as structured linear systems [180, 182, 187, 188,
189, 190, 188, 192].

One can iteratively approximate the inverse or pseudo-inverse of a matrix
[100, Section 5.5.4] by means of Newton’s iteration Xi+1 = 2Xi − XiMXi,
i = 0, 1, We have I−MXi+1 = (I −MXi)2 = (I−MX0)2

i+1
; therefore, the

residual norm ||I −MXi|| is squared in every iteration step, ||I −MXi|| ≤ ||I−
MX0||2i

for i = 1, 2, . . ., and so convergence is very fast unless ||I − MX0|| ≥ 1
or is near 1. The cost of two matrix multiplications is dominant per an iteration
step; this makes the computation fast on multiprocessors as well as in the case
of structured matrices M and Xi. See more on Newton’s iteration, including
the study of its initialization, convergence, and preserving displacement matrix
structure, in [173, chapters 4 and 6], [197, 179, 194, 198, 183, 177].

8

2.4 Symbolic Matrix Computations

Rational matrix computations for a rational or integer input (such as the so-
lution of a linear system and computing the determinant of a matrix) can be
performed with no errors. To decrease the computational cost, one should con-
trol the growth of the precision of computing. Some special techniques achieve
this in rational Gaussian elimination [7, 95]. As a more fundamental tool one
can reduce the computations modulo a sufficiently large integer m to obtain the
rational or integer output values z = p/q (e.g., the solution vector for a linear
system) modulo m. Then we can recover z from two integers m and z mod m
by applying the continued fraction approximation algorithm, in other contexts
called Euclidean algorithm [94, 231]. Instead we can readily obtain z = z mod m
if z mod m < r or z = −m + z mod m if z mod m < r otherwise, provided we
know that the integer z lies in the range [−r, r] and if m > 2r.

Computing the determinant of an integer matrix, we can choose the modulus
m based on Hadamard’s bound. A nonsingular linear system Ax = v can
become singular after the reduction modulo a prime p but only with a low
probability for a random choice of a prime p in a fixed sufficiently large interval
as well as for a reasonably large power of two and a random integer matrix [199].

One can choose m = m1m2 · · ·mk for pairwise relatively prime integers
m1, m2, . . . , mk (we call them coprimes), then compute z modulo all these co-
primes, and finally recover z by applying the Chinese Remainder algorithm
[1, 94]. The error-free computations modulo mi require the precision of logmi

bits; the cost of computing the values z mod mi for i = 1, . . . , k dominates the
cost of the subsequent recovery of the value z mod m.

Alternatively one can apply p-adic (Newton–Hensel) lifting [94]. For solving
linear systems of equations and matrix inversion they can be viewed as the sym-
bolic counterparts to iterative refinement and Newton’s iteration of the previous
section, both well known in numerical linear algebra [178].

Newton’s lifting begins with a prime p, a larger integer k, an integer ma-
trix M , and its inverse Q = M−1 mod p, such that I − QM mod p = 0.
Then one writes X0 = Q, recursively computes the matrices Xj = 2Xj−1 −
Xj−1MXj−1 mod (p2j

) observing that I−XjM = 0 mod (p2j

) for j = 1, 2, . . . , k,
and finally recovers the inverse matrix M−1 from Xk = M−1 mod p2k

.
Hensel’s lifting begins with the same input complemented with an integer

vector b. Then one writes r(0) = b, recursively computes the vectors

u(i) = Qr(i) mod p, r(i+1) = (r(i) − Mu(i))/p, i = 0, 1, . . . , k − 1,

and x(k) =
∑k−1

i=0 u(i)pi such that Mx(k) = b mod (pk), and finally recovers the
solution x to the linear system Mx = b from the vector x(k) = x mod (pk).

Newton’s and Hensel’s lifting are particularly powerful where the input ma-
trices M and M−1 are sparse and/or structured, e.g., Toeplitz, Hankel, Van-
dermonde, Cauchy. Hensel’s lifting enables the solution in nearly optimal time
under both Boolean and word models [178]. We can choose p being a power
of two and use computations in the binary mode. On lifting for sparse linear
systems, see [68].

9

2.5 Computing the Sign and the Value of a Determinant

The value or just the sign of det A, the determinant of a square matrix A, are
required in some fundamental geometric and algebraic/geometric computations
such as the computation of convex hulls, Voronoi diagrams, algebraic curves
and surfaces, multivariate and univariate resultants and Newton’s polytopes.
Faster numerical methods are preferred as long as the correctness of the output
can be certified. In the customary arithmetic filtering approach, one applies
fast numerical methods as long as they work and, in the rare cases when they
fail, shifts to the slower symbolic methods. For fast numerical computation of
det A one can employ factorizations A = PLUP ′ (see Section 2.2) or A = QR
[44, 100], precondition the matrix A [180], and then certify the output sign [200].

If A is a rational or integer matrix, then the Chinese Remainder algorithm
of the previous subsection is highly effective, particularly using heuristics for
working modulo m for m much smaller than Hadamard’s bound on | detA| [26].

Alternatively [160, 161, Appendix], [69], one can solve linear systems Ay(i) =
b(i) for random vectors b(i) and then apply Hensel’s lifting to recover detA as
a least common denominator of the rational components of all y(i).

Storjohann in [218] advanced randomized Newton’s lifting to yield detA
more directly in the optimal asymptotic Boolean time OB(nω+1) for ω < 2.3727.

Wiedemann in 1986, Coppersmith in 1994, and a number of their successors
compute det A by extending the Lanczos and block Lanczos classical algorithms.
This is particularly effective for sparse or structured A and in further extension
to multivariate determinants and resultants (cf. [114, 83, 84, 175]).

3 Polynomial Root-Finding and Factorization

3.1 Computational Complexity Issues

Approximate solution of an nth degree polynomial equation,

p(x) =
n∑

i=0

pi xi = pn

n∏
j=1

(x − zj) = 0 , pn �= 0, (2)

that is the approximation of the roots z1, . . . , zn for given coefficients p0, . . . , pn,
is a classical problem that has greatly influenced the development of mathemat-
ics and computational mathematics throughout four millennia, since the Sume-
rian times [168, 169]. The problem remains highly important for the theory and
practice of the present day algebraic and algebraic/geometric computation, and
new root-finding algorithms appear every year [137, 138, 139, 140].

To approximate even a single root of a monic polynomial p(x) within error
bound 2−b we must process at least (n + 1)nb/2 bits of the input coefficients
p0, . . . , pn−1. Indeed perturb the x-free coefficient of the polynomial (x− 6/7)n

by 2−bn. Then the root x = 6/7 jumps by 2−b, and similarly if we perturb the
coefficients pi by 2(i−n)b for i = 1, . . . , n−1. Thus to ensure the output precision
of b bits, we need an input precision of at least (n − i)b bits for each coefficient

10

pi, i = 0, 1, . . . , n − 1. We need at least �(n + 1)nb/4� bitwise operations to
process these bits, each operation having at most two input bits.

It can be surprising, but we can approximate all n roots within 2−b by using
bn2 Boolean (bit) operations up to a polylogarithmic factor for b of order n log n
or higher, that is we can approximate all roots about as fast as we write down the
input. We achieve this by applying the divide-and-conquer algorithms in [166,
168, 174] (see [120, 152, 213] on the related works). The algorithms first compute
a sufficiently wide root-free annulus A on the complex plane, whose exterior
and interior contain comparable numbers of the roots, that is the same numbers
up to a fixed constant factor. Then the two factors of p(x) are numerically
computed, that is F (x), having all its roots in the interior of the annulus, and
G(x) = p(x)/F (x), having no roots there. Then the polynomials F (x) and G(x)
are recursively factorized until factorization of p(x) into the product of linear
factors is computed numerically. From this factorization, approximations to all
roots of p(x) are obtained. For approximation of a single root see competitive
algorithms of [172].

It is interesting that, up to polylog factors, both lower and upper bounds on
the Boolean time decrease to bn [174] if we only seek the factorization of p(x),
that is, if instead of the roots zj , we compute scalars aj and bj such that

||p(x)−
n∏

j=1

(ajx − cj)|| < 2−b||p(x)|| (3)

for the polynomial norm ||∑i qix
i|| = ∑

i |qi|.
The isolation of the zeros of a polynomial p(x) of (2) having integer coeffi-

cients and simple zeros is the computation of n disjoint discs, each containing
exactly one root of p(x). This can be a bottleneck stage of root approxima-
tion because one can contract such discs by performing a few subdivisions and
then can apply numerical iterations (such as Newton’s) that would very rapidly
approximate the isolated zeros within a required tolerance.

Based on the gap theorem of Mahler (1964) (see [82] on recent progress),
[213, Section 20] reduces the isolation problem to computing factorization (3) for
b = �(2n+1)(l+1+log(n+1))� where l is the maximal coefficient length, that is
the minimum integer such that |�(pj)| < 2l and |	(pj)| < 2l for j = 0, 1, . . . , n.
Combining the cited algorithms of [166, 168, 174] with this reduction yields

Theorem 3.1 Let polynomial p(x) of (2) have n distinct simple zeros and inte-
ger coefficients in the range [−2τ , 2τ]. Then one can isolate the n zeros of p(x)
from each other at the Boolean cost ÕB(n2τ).

The algorithms in [166, 168, 174] incorporate the techniques of [152, 213],
but advance them and support substantially smaller upper bounds on the com-
putational complexity. In particular these algorithms decrease by a factor of n
the estimates of [213, Theorems 2.1, 19.2 and 20.1] on the Boolean complexity
of polynomial factorization, root approximation and root isolation.

11

3.2 Root-Finding via Functional Iterations

About the same record complexity estimates for root-finding would be also sup-
ported by some functional iteration algorithms if one assumes their convergence
rate defined by ample empirical evidence, although never proved formally. The
users accept such an evidence instead of the proof and prefer the latter algo-
rithms because they are easy to program and have been carefully implemented;
like the algorithms of [166, 168, 172, 174] they allow tuning the precision of
computing to the precision required for every output root, which is higher for
clustered and multiple roots than for single isolated roots.

For approximating a single root z, the current practical champions are mod-
ifications of Newton’s iteration, z(i + 1) = z(i) − a(i)p(z(i))/p′(z(i)), a(i) being
the step-size parameter [132], Laguerre’s method [92, 104], and the Jenkins–
Traub algorithm [109]. One can deflate the input polynomial via its numerical
division by x−z to extend these algorithms to approximating a small number of
other roots. If one deflates many roots, the coefficients of the remaining factor
can grow large as, e.g., in the divisor of the polynomial p(x) = x1000 + 1 that
has degree 498 and shares with p(x) all its roots having positive real parts.

For the approximation of all roots, a good option is the Weierstrass–Durand–
Kerner’s (hereafter WDK) algorithm, defined by the recurrence

zj(l + 1) = zj(l) − p (zj(l))
pn

∏
i �=j (zj(l) − zi(l))

, j = 1, . . . , n, l = 0, 1, (4)

It has excellent empirical global convergence. [203] links it to polynomial fac-
torization and adjusts it to approximating a single root in O(n) ops per step.

A customary choice of n initial approximations zj(0) to the n roots of
the polynomial p(x) (see [16] for a heuristic alternative) is given by zj(0) =
r t exp(2π

√−1/n) , j = 1, . . . , n. Here t > 1 is a fixed scalar and r is an up-
per bound on the root radius, such that all roots zj lie in the disc {x : |x| = r}
on the complex plane. This holds, e.g., for

r = 2 max
i<n

|pi/pn|
1

n−i . (5)

For a fixed l and for all j the computation in (4) uses O(n2) ops. We can use
just O(n log2 n) ops if we apply fast multipoint polynomial evaluation algorithms
based of fast FFT based polynomial division [1, 21, 25, 173, 184], but then we
would face numerical stability problems.

As with Newton’s, Laguerre’s, Jenkins–Traub’s algorithms and the Inverse
Power iteration in [17, 202], one can employ this variant of the WDK to ap-
proximate many or all roots of p(x) without deflation. Toward this goal, one
can concurrently apply the algorithm at sufficiently many distinct initial points
zj(0) = r t exp(2π

√−1/N) , j = 1, . . . , N ≥ n (on a large circle for large t) or
according to [16]. The work can be distributed among processors that do not
need to interact with each other until they compute the roots.

See [137, 138, 139, 140, 168] and references therein on this and other effective
functional iteration algorithms. [16] covers MPSolve, the most effective current
root-finding subroutines, based on Ehrlich–Aberth’s algorithm.

12

3.3 Matrix Methods for Polynomial Root-Finding

By cautiously avoiding numerical problems [100, Sec.7.4.6], one can approximate
the roots of p(x) as the eigenvalues of the associated (generalized) companion
matrices, that is matrices having characteristic polynomial p(x). Then one
can employ numerically stable methods and the excellent software available for
matrix computations, such as the QR celebrated algorithm. E.g., Matlab’s
subroutine roots applies it to the companion matrix of a polynomial. Malek and
Vaillancourt (1995), and Fortune [91] and in his root-finding package EigenSolve,
apply it to other generalized companion matrices and update them when the
approximations to the roots are improved.

The algorithms of [17, 18, 19, 176, 15, 225, 202, 191] exploit the structure of
(generalized) companion matrices, e.g., where they are diagonal plus rank-one
(hereafter DPR1) matrices, to accelerate the eigenvalue computations. The pa-
pers [17, 202] apply and extend the Inverse Power method [100, Section 7.6.1];
they exploit matrix structure, simplify the customary use of Rayleigh quotients
for updating approximate eigenvalues, and apply special preprocessing tech-
niques. For both companion and DPR1 inputs the resulting algorithms use
linear space and linear arithmetic time per iteration step, enable dramatic par-
allel acceleration, and deflate the input in O(n) ops; for DPR1 matrices repeated
deflation can produce all n roots with no numerical problems.

The algorithms of [18, 19, 15, 225] employ the QR algorithm, but decrease
the arithmetic time per iteration step from quadratic to linear by exploiting
the rank matrix structure of companion matrices. They, however, face some
problems for ensuring fast and numerically safe access to the generators of the
rank structured matrices involved in the iterative process.

The papers [176, 191] advance Cardinal’s polynomial root-finders of 1996,
based on repeated squaring. Each squaring is reduced to performing a small
number of FFTs and thus uses order n logn ops. One can weigh potential
advantage of convergence to nonlinear factors of p(x), representing multiple
roots or root clusters, at the price of increasing the time per step by a factor of
log n versus the Inverse Power method, advanced for root-finding in [17, 202].

3.4 Extension to Approximate Polynomial GCDs

[171] combines polynomial root-finders with algorithms for bipartite matching
to compute approximate univariate polynomial greatest common divisor (GCD)
of two polynomials, that is, the GCD of the maximum degree for two polyno-
mials of the same or smaller degrees lying in the ε-neighborhood of the input
polynomials for a fixed positive ε. Approximate GCDs are required in computer
vision, algebraic geometry, computer modeling, and control. For a single ex-
ample, GCD defines the intersection of two algebraic curves defined by the two
input polynomials, and approximate GCD does this under input perturbations
of small norms. See [14] on the bibliography on approximate GCDs, but see
[162, 173, 189] on the structured matrix algorithms involved.

13

3.5 Univariate Real Root Isolation and Approximation

In some algebraic and geometric computations, the input polynomial p(x) has
real coefficients, and only its real roots must be approximated. One of the fastest
real root-finder in the current practice is still MPSolve, which uses almost the
same running time for real roots as for all complex roots. This can be quite
vexing, because very frequently the real roots make up only a small fraction of all
roots [76]. Recently, however, the challenge was taken in the papers [202, 191],
whose numerical iterations are directed to converge to real and nearly real roots.
This promises acceleration by a factor of d/r where the input polynomial has
d roots, of which r roots are real or nearly real. In the rest of this section we
cover an alternative direction, that is real root-finding by means of isolation of
the real roots of a polynomial.

We write p(x) = ad xd + · · · + a1 x + a0, assume integral coefficients with
the maximum bit size τ = 1 + maxi≤d{lg |ai|}, and seek isolation of real roots,
that is seek real line intervals with rational endpoints, each containing exactly
one real root. We may seek also the root’s multiplicity. We assume rational
algorithms, that is, error-free algorithms that operate with rational numbers.

If all roots of p(x) are simple, then the minimal distance between them,
the separation bound, is at most b = d−(d+2)/2(d + 1)(1−d)/22τ(1−d), or roughly
2−Õ(dτ) (e.g., [143]), and we isolate real roots as soon as we approximate them
within less than b/2. Effective solution algorithms rely on Continued Fractions
(see below), having highly competitive implementation in synaps [149, 106], on
the Descartes’ rule of signs, and the Sturm or Sturm–Habicht sequences.

Theorem 3.2 The rational algorithms discussed in the sequel isolate all r real
roots of p(x) in ÕB(d4τ2) bitwise ops. Under certain probability distributions
for the coefficients, they are expected to use ÕB(d3τ) or ÕB(rd2τ).

The bounds exceed those of Theorem 3.1, but rational solvers are heavily in
use, have long and respected history, and are of independent technical interest.
Most popular are the subdivision algorithms, such as sturm, descartes and
bernstein. By mimicking binary search, they repeatedly subdivide an initial
interval that contains all real roots until every tested interval contains at most
one real root. They differ in the way of counting the real roots in an interval.

The algorithm sturm (due to Sturm 1835) is the closest to binary search; it
produces isolating intervals and root multiplicities at the cost ÕB(d4τ2) [63, 81];
see [76] on the decrease of the expected cost to ÕB(rd2τ).

The complexity of both algorithms descartes and bernstein is ÕB(d4τ2)
[71, 81]. Both rely on Descartes’ rule of sign, but the bernstein algorithm
also employs the Bernstein basis polynomial representation. See [227, 2] on the
theory and history of descartes, [45, 210, 70, 142, 211] on its modern versions,
and [81, 151] and the references therein on the bernstein algorithm.

The Continued Fraction algorithm, cf, computes the continued fraction ex-
pansions of the real roots of the polynomial. The first formulation of the algo-
rithm is due to Vincent. By Vincent’s theorem repeated transforms x �→ c + 1

x

14

eventually yield a polynomial with zero or one sign variation and thus (by
Descartes’ rule) with zero or resp. one real root in (0,∞). In the latter case
the inverse transformation computes an isolating interval. Moreover, the c’s
in the transform correspond to the partial quotients of the continued fraction
expansion of the real root. Variants differ in the way they compute the partial
quotients.

Recent algorithms control the growth of coefficient bit-size and decrease
the bit-complexity from exponential (of Vincent) to ÕB(d3τ) expected and
ÕB(d4τ2) worst-case bit complexity. See [224], [214], [141, 223], and the refer-
ences therein on these results, history and variants of CP algorithms.

4 Systems of Nonlinear Equations

Given a system {p1(x1, . . . , xn), . . . , pr(x1, . . . , xn)} of nonlinear polynomials
with rational coefficients, the n-tuple of complex numbers (a1, . . . , an) is a so-
lution of the system if pi(a1, . . . , an) = 0, 1 ≤ i ≤ r. Each pi(x1, . . . , xn) is said
to be an element of Q[x1, . . . , xn], the ring of polynomials in x1, . . . , xn over the
field of rational numbers. In this section, we explore the problem of solving a
well-constrained system of nonlinear equations, namely when r = n, which is
the typical case in applications. We also indicate how an initial phase of exact
algebraic computation leads to certain numerical methods that can approximate
all solutions; the interaction of symbolic and numeric computation is currently
an active domain of research, e.g. [22, 80, 122]. We provide an overview and
cite references to different symbolic techniques used for solving systems of al-
gebraic (polynomial) equations. In particular, we describe methods involving
resultant and Gröbner basis computations.

Resultants, as explained below, formally express the solvability of algebraic
systems with r = n+1; solving a well-constrained system reduces to a resultant
computation as illustrated in the sequel. The Sylvester resultant method is
the technique most frequently utilized for determining a common root of two
polynomial equations in one variable. However, using the Sylvester method
successively to solve a system of multivariate polynomials proves to be inefficient.

It is more efficient to eliminate n variables together from n +1 polynomials,
thus, leading to the notion of the multivariate resultant. The three most com-
monly used multivariate resultant matrix formulations are those named after
Sylvester or Macaulay [36, 38, 131], those named after Bézout or Dixon [33, 60,
118], or the hybrid formulation [57, 110, 119]. Extending the Sylvester-Macaulay
type, we shall emphasize also sparse resultant formulations [37, 96, 220]. For a
unified treatment, see [79].

The theory of Gröbner bases provides powerful tools for performing compu-
tations in multivariate polynomial rings. Formulating the problem of solving
systems of polynomial equations in terms of polynomial ideals, we will see that
a Gröbner basis can be computed from the input polynomial set, thus, allowing
for a form of back substitution in order to compute the common roots.

Although not discussed, it should be noted that the characteristic set algo-

15

rithm can be utilized for polynomial system solving. Although introduced for
studying algebraic differential equations [208], the method was converted to or-
dinary polynomial rings in search of an effective method for automatic theorem
proving [236]. Given a polynomial system P , the characteristic set algorithm
computes a new system in triangular form, such that the set of common roots
of P is equivalent to the set of roots of the triangular system [117]. Triangular
systems have k1 polynomials in a specific variable, k2 polynomials in this and
one more variable, k3 polynomials in these two and one more variable, and so
on, for a total number of k1 + · · ·+ kn polynomials.

4.1 Resultant of Univariate Systems

The question of whether two polynomials f(x), g(x) ∈ Q[x],

f(x) = fnxn + fn−1x
n−1 + · · ·+ f1x + f0 ,

g(x) = gmxm + gm−1x
m−1 + · · ·+ g1x + g0 ,

have a common root leads to a condition that has to be satisfied by the coef-
ficients of f, g. Using a derivation of this condition due to Euler, the Sylvester
matrix of f, g (which is of dimension m+n) can be formulated. The vanishing of
the determinant of the Sylvester matrix, known as the Sylvester resultant, is a
necessary and sufficient condition for f, g to have common roots in the algebraic
closure of the coefficient ring.

As a running example let us consider the following system in two variables
provided in [127]:

f = x2 + xy + 2x + y − 1 = 0 ,

g = x2 + 3x− y2 + 2y − 1 = 0 .

Without loss of generality, the roots of the Sylvester resultant of f and g
treated as polynomials in y, whose coefficients are polynomials in x, are the
x-coordinates of the common roots of f, g. More specifically, the Sylvester re-
sultant with respect to y is given by the following determinant:

det

x + 1 x2 + 2 x − 1 0

0 x + 1 x2 + 2 x− 1

−1 2 x2 + 3 x− 1

 = −x3 − 2 x2 + 3 x .

An alternative matrix of order max{m, n}, named after Bézout, yields the same
determinant.

The roots of the Sylvester determinant are {−3, 0, 1}. For each x value, one
can substitute the x value back into the original polynomials yielding the solu-
tions (−3, 1), (0, 1), (1,−1). More practically, one can use the Sylvester matrix
to reduce system solving to the computation of eigenvalues and eigenvectors as
explained in “Polynomial System Solving by Using Resultants”.

16

The Sylvester formulations has led to a subresultant theory, which produced
an efficient algorithm for computing the GCD of univariate polynomials and
their resultant, while controlling intermediate expression swell [207, 129]; see
also section “Subdivision algorithms”. Subresultant theory has been generalized
to several variables, e.g. [32, 53].

4.2 Resultants of Multivariate Systems

The solvability of a set of nonlinear multivariate polynomials can be determined
by the vanishing of a generalization of the resultant of two univariate polyno-
mials. We examine two generalizations, namely, the classical and the sparse
resultants. Both of them generalize the determinant of n+1 linear polynomials
in n variables.

The classical resultant of a system of n+1 polynomials with symbolic coeffi-
cients in n variables vanishes exactly when there exists a common solution in the
projective space over the algebraic closure of the coefficient ring [50]. The sparse
(or toric) resultant characterizes solvability of the same overconstrained system
over a smaller space, which coincides with affine space under certain genericity
conditions [51, 96, 220]. The main algorithmic question is to construct a matrix
whose determinant is the resultant or a nontrivial multiple of it.

Cayley, and later Dixon, generalized Bézout’s method to a set

{p1 (x1, . . . , xn) , . . . , pn+1 (x1, . . . , xn)}

of n + 1 polynomials in n variables. The vanishing of the determinant of the
Bézout–Dixon matrix is a necessary and sufficient condition for the polynomials
to have a nontrivial projective common root, and also a necessary condition for
the existence of an affine common root [33, 60, 79, 118]. A nontrivial resultant
multiple, known as the projection operator, can be extracted via a method dis-
cussed in [41, thm. 3.3.4]. This article, along with [72], explain the correlation
between residue theory and the Bézout–Dixon matrix; the former leads to an
alternative approach for studying and approximating all common solutions.

Macaulay [131] constructed a matrix whose determinant is a multiple of the
classical resultant; he stated his approach for a well-constrained system of n
homogeneous polynomials in n variables. The Macaulay matrix simultaneously
generalizes the Sylvester matrix and the coefficient matrix of a system of linear
equations. Like the Dixon formulation, the Macaulay determinant is a multiple
of the resultant. Macaulay, however, proved that a certain minor of his ma-
trix divides the matrix determinant to yield the exact resultant in the case of
generic coefficients. To address arbitrary coefficients, Canny [36] proposed a
general method that perturbs any polynomial system and extracts a nontrivial
projection operator from Macaulay’s construction.

By exploiting the structure of polynomial systems by means of sparse elimi-
nation theory, a matrix formula for computing the sparse resultant of n+1 poly-
nomials in n variables was given in [37] and consequently improved in [40, 75].
Like the Macaulay and Dixon matrices, the determinant of the sparse resultant

17

matrix, also known as Newton matrix, only yields a projection operation. How-
ever, in certain cases of bivariate and multihomogeneous systems, determinantal
formulae for the sparse resultant have been derived [57, 78, 119]. To address
degeneracy issues, Canny’s perturbation has been extended in the sparse con-
text [54]. D’Andrea [52] extended Macaulay’s rational formula for the resultant
to the sparse setting, thus defining the sparse resultant as the quotient of two
determinants; see [77] for a simplified algorithm in certain cases.

Here, sparsity means that only certain monomials in each of the n + 1 poly-
nomials have nonzero coefficients. Sparsity is measured in geometric terms,
namely, by the Newton polytope of the polynomial, which is the convex hull
of the exponent vectors corresponding to nonzero coefficients. The mixed vol-
ume of the Newton polytopes of n polynomials in n variables is defined as
an integer-valued function that bounds the number of affine common roots of
these polynomials [13]. This remarkable bound is the cornerstone of sparse
elimination theory. The mixed volume bound is significantly smaller than the
classical Bézout bound for polynomials with small Newton polytopes but they
coincide for polynomials whose Newton polytope is the unit simplex multiplied
by the polynomial’s total degree. Since these bounds also determine the degree
of the sparse and classical resultants, respectively, the latter has larger degree
for sparse polynomials. Last, but not least, the classical resultant can identi-
cally vanish over sparse systems, whereas the sparse resultant can still yield the
desired information about their common roots [51].

4.3 Polynomial System Solving by Using Resultants

Suppose we are asked to find the common roots of a set of n polynomials in n
variables {p1(x1, . . . , xn), . . ., pn(x1, . . . , xn)}. By augmenting the polynomial
set by a generic linear polynomial [36, 51], one can construct the u-resultant
of a given system of polynomials. The u-resultant is named after the vector
of indeterminates u, traditionally used to represent the generic coefficients of
the additional linear polynomial. The u-resultant factors into linear factors
over the complex numbers, providing the common roots of the given polyno-
mials equations. The method relies on the properties of the multivariate resul-
tant, and hence, can be constructed using either Macaulay’s, Dixon’s, or sparse
formulations. An alternative approach is to hide a variable in the coefficient
field [73, 79, 134].

Consider the previous example augmented by a generic linear form:

p1 = x2 + xy + 2x + y − 1 = 0 ,

p2 = x2 + 3x− y2 + 2y − 1 = 0 ,

pl = ux + vy + w = 0 .

As described in [38], the following (transposed) Macaulay matrix M corre-

18

sponds to the u-resultant of the above system of polynomials:

M =

1 0 0 1 0 0 0 0 0 0
1 1 0 0 1 0 u 0 0 0
2 0 1 3 0 1 0 u 0 0
0 1 0 −1 0 0 v 0 0 0
1 2 1 2 3 0 w v u 0
−1 0 2 −1 0 3 0 w 0 u
0 0 0 0 −1 0 0 0 0 0
0 1 0 0 2 −1 0 0 v 0
0 −1 1 0 −1 2 0 0 w v
0 0 −1 0 0 −1 0 0 0 w

.

It should be noted that

det(M) = (u − v + w)(−3u + v + w)(v + w)(u − v)

corresponds to the affine solutions (1,−1), (−3, 1), (0, 1), whereas one solution
at infinity corresponds to the last factor.

Resultant matrices can also reduce polynomial system solving to a regular
or generalized eigenproblem (cf. “Matrix Eigenvalues and Singular Values Prob-
lems”), thus, transforming the nonlinear question to a problem in linear algebra.
This is a classical technique that enables us to numerically approximate all solu-
tions [4, 39, 41, 73, 79]. For demonstration, consider the previous system and its
resultant matrix M . The matrix rows are indexed by the following row vector
of monomials in the eliminated variables:

v =
[
x3, x2y, x2, xy2, xy, x, y3, y2, y, 1

]
.

Vector vM expresses the polynomials indexing the columns of M , which are
multiples of the three input polynomials by various monomials. Let us specialize
variables u and v to random values. Then M contains a single variable w and is
denoted M(w). Solving the linear system vM(w) = 0 in vector v and in scalar
w is a generalized eigenproblem, since M(w) can be represented as M0 + wM1,
where M0 and M1 have numeric entries. If, moreover, M1 is invertible, we arrive
at the following eigenproblem:

v (M0 + wM1) = 0 ⇐⇒ v
(−M−1

1 M0 − wI
)

= 0 ⇐⇒ v
(−M−1

1 M0

)
= wv .

For every solution (a, b) of the original system, there is a vector v among the
computed eigenvectors, which we evaluate at x = a, y = b and from which
the solution can be recovered by division [73]. As for the eigenvalues, they
correspond to the values of w at the solutions; see [74] on numerical issues, and
an implementation.

An alternative method for approximating or isolating all real roots of the
system is to use the so-called Rational Univariate Representation (RUR) of
algebraic numbers [35, 209]. This allows us to express each root coordinate
as the value of a univariate polynomial, evaluated over an algebraic number,

19

which is specified as a solution of a single polynomial equation. All polynomials
involved in this approach are derived from the resultant.

The resultant matrices are sparse and have quasi Toeplitz/Hankel structure
(also called multilevel Toeplitz/Hankel structure), which enables their fast mul-
tiplication by vectors. By combining the latter property with various advanced
nontrivial methods of multivariate polynomial root-finding, substantial accel-
eration of the construction and computation of the resultant matrices and ap-
proximation of the system’s solutions was achieved in [24, 83, 84, 146, 147, 148].

A comparison of the resultant formulations can be found, e.g., in [79, 117,
134]. The multivariate resultant formulations have been used for diverse appli-
cations such as algebraic and geometric reasoning [41, 59, 134], including sepa-
ration bounds for the isolated roots of arbitrary polynomial systems [82], robot
kinematics [55, 206, 134], and nonlinear computational geometry, computer-
aided geometric design and, in particular, implicitization [32, 42, 85, 108].

4.4 Gröbner Bases

Solving systems of nonlinear equations can be formulated in terms of polynomial
ideals [50, 102, 123]. The ideal generated by a system of polynomials p1, . . . , pr

over Q[x1, . . . , xn] is the set of all linear combinations

(p1, . . . , pr) = {h1p1 + · · ·+ hrpr | h1, . . . , hr ∈ Q [x1, . . . , xn]} .

The algebraic variety of p1, . . . , pr ∈ Q[x1, . . . , xn] is the set of their common
roots,

V (p1, . . . , pr) = {(a1, . . . , an) ∈ Cn | p1 (a1, . . . , an) = . . . = pr (a1, . . . , an) = 0} .

A version of the Hilbert Nullstellensatz states that

V (p1, . . . , pr) = the empty set ∅ ⇐⇒ 1 ∈ (p1, . . . , pr) over Q [x1, . . . , xn] ,

which relates the solvability of polynomial systems to the ideal membership
problem.

A term t = xe1
1 xe2

2 . . . xen
n of a polynomial is a product of powers with

deg(t) = e1 + · · · + en. In order to add needed structure to the polynomial
ring we will require that the terms in a polynomial be ordered in an admissible
fashion [50, 95]. Two of the most common admissible orderings are the lex-
icographic order (≺l), where terms are ordered as in a dictionary, and the
degree order (≺d), where terms are first compared by their degrees with equal
degree terms compared lexicographically. A variation to the lexicographic order
is the reverse lexicographic order, where the lexicographic order is reversed.

Much like a polynomial remainder process, the process of polynomial reduc-
tion involves subtracting a multiple of one polynomial from another to obtain a
smaller degree result [50, 102, 123]. A polynomial g is said to be reducible with
respect to a set P = {p1, . . . , pr} of polynomials if it can be reduced by one or
more polynomials in P . When g is no longer reducible by the polynomials in
P , we say that g is reduced or is a normal form with respect to P .

20

For an arbitrary set of basis polynomials, it is possible that different re-
duction sequences applied to a given polynomial g could reduce to different
normal forms. A basis G ⊆ Q[x1, . . . , xn] is a Gröbner basis if and only if
every polynomial in Q[x1, . . . , xn] has a unique normal form with respect to
G. Buchberger [27, 28, 29] showed that every basis for an ideal (p1, . . . , pr) in
Q[x1, . . . , xn] can be converted into a Gröbner basis {p∗1, . . . , p∗s} = GB(p1, . . . , pr),
concomitantly designing an algorithm that transforms an arbitrary ideal basis
into a Gröbner basis. Another characteristic of Gröbner bases is that by using
the above mentioned reduction process we have

g ∈ (p1 . . . , pr) ⇐⇒ g mod (p∗1, . . . , p
∗
s) = 0 .

Further, by using the Nullstellensatz it can be shown that p1 . . . , pr viewed as
a system of algebraic equations is solvable if and only if 1 �∈ GB(p1, . . . , pr).

Depending on which admissible term ordering is used in the Gröbner bases
construction, an ideal can have different Gröbner bases. However, an ideal can-
not have different (reduced) Gröbner bases for the same term ordering. Any
system of polynomial equations can be solved using a lexicographic Gröbner
basis for the ideal generated by the given polynomials. It has been observed,
however, that Gröbner bases, more specifically lexicographic Gröbner bases, are
hard to compute [135]. In the case of zero-dimensional ideals, those whose vari-
eties have only isolated points, a change of basis algorithm was outlined in [88],
which can be utilized for solving: one computes a Gröbner basis for the ideal
generated by a system of polynomials under a degree ordering. The so-called
change of basis algorithm can then be applied to the degree ordered Gröbner
basis to obtain a Gröbner basis under a lexicographic ordering. Significant
progress has been achieved in the algorithmic realm by Faugère [86, 87].

Another way to finding all common real roots is by means of RUR; see the
previous section. All polynomials involved in this approach can be derived from
the Gröbner basis. A rather recent development concerns the generalization
of Gröbner bases to border bases, which contain all information required for
system solving but can be computed faster and seem to be numerically more
stable [123, 150, 216].

Turning to Lazard’s example in form of a polynomial basis,

p1 = x2 +xy +2x +y −1 ,
p2 = x2 +3x −y2 +2y −1 ,

one obtains (under lexicographical ordering with x≺ly) a Gröbner basis in which
the variables are triangulated such that the finitely many solutions can be com-
puted via back substitution:

p1
∗ = x2 +3x +2y −2 ,

p2
∗ = xy −x −y +1 ,

p3
∗ = y2 −1 .

The final univariate polynomial has minimal degree, whereas the polynomials
used in the back substitution have total degree no larger than the number of

21

roots. As an example of polynomial reduction the polynomial x2y2 is reduced
with respect to the previously computed Gröbner basis {p∗1, p∗2, p∗3} = GB(p1, p2)
along two distinct reduction paths, both yielding −3x − 2y + 2 as the normal
form.

There is a strong connection between lexicographic Gröbner bases and the
previously mentioned resultant techniques. For some types of input polynomials,
the computation of a reduced system via resultants might be much faster than
the computation of a lexicographic Gröbner basis.

Gröbner bases can be used for many polynomial ideal theoretic operations
[29, 49]. Other applications include computer-aided geometric design [108],
polynomial interpolation [125], coding and cryptography [90], and robotics [89].

5 Research Issues and Summary

Algebraic algorithms deal with numbers, vectors, matrices, polynomials, formal
power series, exponential and differential polynomials, rational functions, alge-
braic sets, curves and surfaces. In this vast area, manipulations with matrices
and polynomials, in particular the solution of a polynomial equation and linear
and polynomial systems of equations, are most fundamental in modern compu-
tations in Sciences, Engineering, and Signal and Image Processing. We reviewed
the state of the art for the solution of these three tasks and gave pointers to the
extensive bibliography.

Among numerous interesting and important research directions of the topics
in Sections 2 and 3, we wish to cite computations with structured matrices,
including their applications to polynomial root-finding, currently of growing
interest, and new techniques for randomized preprocessing for matrix computa-
tions, evaluation of resultants and polynomial root-finding.

Section 4 of this chapter has briefly reviewed polynomial system solving
based on resultant matrices as well as Gröbner bases. Both approaches are
currently active. This includes practical applications to small and medium-size
systems. Efficient implementations that handle the nongeneric cases, including
multiple roots and nonisolated solutions, is probably the most crucial issue to-
day in relation to resultants. The latter are also studied in relation to a more
general object, namely the discriminant of a well-constrained system, which
characterizes the existence of multiple roots. Another interesting current direc-
tion is algorithmic improvement by exploiting the structure of the polynomial
systems, including sparsity, or the structure of the encountered matrices, for
both resultants and Gröbner bases.

6 Defining Terms

Characteristic polynomial: Shift an input matrix A by subtracting the iden-
tity matrix xI scaled by variable x. The determinant of the resulting ma-
trix is the characteristic polynomial of the matrix A. Its roots coincide

22

with the eigenvalues of the shifted matrix A − xI.

Condition number of a matrix is a scalar κ which grows large as the ma-
trix approaches a singular matrix; then numeric inversion becomes an
ill-conditioned problem. κ OUTPUT ERROR NORM ≈ INPUT ERROR NORM.

Degree order: An order on the terms in a multivariate polynomial; for two
variables x and y with x ≺ y the ascending chain of terms is 1 ≺ x ≺ y ≺
x2 ≺ xy ≺ y2 · · ·.

Determinant: A polynomial in the entries of a square matrix whose value is
invariant in adding to a row (resp. column) any linear combination of other
rows (resp. columns). det(AB) = det A·detB for a pair of square matrices
A and B, detB = −det A if the matrix B is obtained by interchanging
a pair of adjacent rows or columns of a matrix A, detA �= 0 if and only
if a matrix A is invertible. Determinant of a block diagonal or block
triangular matrix is the product of the diagonal blocks, and so det A =
(det A0.0) det S under (1). One can compute a determinant by using these
properties and matrix factorizations, e.g., recursive factorization (1).

Gröbner basis: Given a term ordering, the Gröbner basis of a polynomial
ideal is a generating set of this ideal, such that the (multivariate) division
of any polynomial by the basis has a unique remainder.

Lexicographic order: An order on the terms in a multivariate polynomial;
for two variables x and y with x ≺ y the ascending chain of terms is 1 ≺
x ≺ x2 ≺ · · · ≺ y ≺ xy ≺ x2y · · · ≺ y2 ≺ xy2 · · ·.

Matrix eigenvector: A column vector v such that Av = λv, for a square
matrix A and the associated eigenvalue λ. A generalized eigenvector v
satisfies the equation Av = λBv for two square matrices A and B and
the associated eigenvalue λ. Both definitions extend to row vectors that
premultiply the associated matrices.

Mixed volume: An integer-valued function of n convex polytopes in n-dimen-
sional Euclidean space. Under proper scaling, this function bounds the
number of toric complex roots of a well-constrained polynomial system,
where the convex polytopes are defined to be the Newton polytopes of the
given polynomials.

Newton polytope: The convex hull of the exponent vectors corresponding to
terms with nonzero coefficients in a given multivariate polynomial.

Ops: Arithmetic operations, i.e., additions, subtractions, multiplications, or
divisions; as in flops, i.e., floating point operations.

Resultant: A polynomial in the coefficients of a system of n polynomials with
n + 1 variables, whose vanishing is the minimal necessary and sufficient
condition for the existence of a solution of the system.

23

Separation bound: The minimum distance between two (complex) roots of a
univariate polynomial.

Singularity: A square matrix is singular if there is a nonzero second matrix
such that the product of the two is the zero matrix. Singular matrices do
not have inverses.

Sparse matrix: A matrix whose zero entries are much more numerous than
its nonzero entries.

Structured matrix: A matrix whose every entry can be derived by a formula
depending on a smaller number of parameters, typically on O(m + n)
parameters for an m×n matrix, as opposed to its mn entries. For instance,
an m × n Cauchy matrix has 1

si−tj
as the entry in row i and column j

and is defined by m + n parameters si and tj, i = 1, . . . , m; j = 1, . . . , n.
Typically a structured matrix can be multiplied by a vector in nearly linear
arithmetic time.

References

[1] Aho, A., Hopcroft, J., Ullman, J., The Design and Analysis of Algorithms.
Addison-Wesley, Reading, MA, 1974.

[2] Alesina, A., Galuzzi, M., A new proof of Vincent’s theorem.
L’Enseignement Mathématique, 44:219–256, 1998.

[3] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra,
J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen,
D. LAPACK Users’ Guide. 3rd Edition, SIAM, 1999.

[4] Auzinger, W., Stetter, H.J., An elimination algorithm for the computation
of all zeros of a system of multivariate polynomial equations. In Proc.
Intern. Conf. on Numerical Math., Intern. Series of Numerical Math., 86,
12–30. Birkhäuser, Basel, 1988.

[5] Bach, E., Shallit, J., Algorithmic Number Theory, Volume 1: Efficient
Algorithms. The MIT Press, Cambridge, MA, 1996.

[6] Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H., editors,
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical
Guide. SIAM, Philadelphia, 2000.

[7] Bareiss, E.H., Sylvester’s identity and multistep integers preserving Gaus-
sian elimination. Math. Comp., 22, 565–578, 1968.

[8] Barrett, R., Berry, M.W., Chan, T.F., Demmel, J., Donato, J., Dongarra,
J., Eijkhout, V., Pozo, R., Romine, C., Van Der Vorst, H., Templates
for the Solution of Linear Systems: Building Blocks for Iterative Methods.
SIAM, Philadelphia, 1993.

24

[9] Basu, S., Pollack, R., Roy, M.-F., Algorithms in Real Algebraic Geometry,
Algorithms and Computation in Mathematics, 10, Springer, 2003.

[10] Benzi, M., Preconditioning techniques for large linear systems: a survey.
J. Computational Physics, 182, 418–477, 2002.

[11] Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Kettner, L.,
Mehlhorn, K., Reichel, J., Schmitt, S., Schömer, E., Wolpert, N., EX-
ACUS: Efficient and Exact Algorithms for Curves and Surfaces. In ESA,
LNCS, 1669, 155–166, Springer, 2005.

[12] Berlekamp, E.R., Factoring polynomials over large finite fields. Math.
Comp., 24, 713–735, 1970.

[13] Bernstein, D.N., The number of roots of a system of equations. Funct.
Anal. and Appl., 9(2), 183–185, 1975.

[14] Bini, D.A., Boito, P., A fast algorithm for approximate polynomial GCD
based on structured matrix computations. Operator Theory: Advances
and Applications, 199, 155–173, Birkhäuser, 2010.

[15] Bini, D.A., Boito, P., Eidelman, Y., Gemignani, L., Gohberg, I., A fast
implicit QR algorithm for companion matrices. Linear Algebra and Appli-
cations, 432, 2006–2031, 2010.

[16] Bini, D.A., Fiorentino, G., Design, analysis, and implementation of a
Mmultiprecision polynomial rootfinder. Numer. Algs., 23, 127–173, 2000.

[17] Bini, D.A., Gemignani, L., Pan, V.Y., Inverse power and Durand/Kerner
iteration for univariate polynomial root-finding. Computers and Mathe-
matics (with Applications), 47 (2/3), 447–459, 2004. Also TRs 2002-003,
2002-020, CUNY Ph.D. Program in CS, Graduate Center, CUNY, 2002.

[18] Bini, D.A., Gemignani, L., Pan, V.Y., Fast and stable QR eigenvalue algo-
rithms for generalized companion matrices and secular equation. Numer.
Math., 3, 373–408, 2005. (Also TR 1470, Univ. Pisa, Italy, 2003.)

[19] Bini, D.A., Gemignani, L., Pan, V.Y., Improved initialization of the ac-
celerated and robust QR-like polynomial root-finding. Electronic Trans-
actions on Numerical Analysis, 17, 195–205, 2004.

[20] Bini, D., Pan, V.Y., Polynomial division and its computational complex-
ity, J. Complexity, 2, 179–203, 1986.

[21] Bini, D., Pan, V.Y., Polynomial and Matrix Computations, Volume 1,
Fundamental Algorithms. Birkhäuser, Boston, 1994.

[22] Bini, D.A., Pan, V.Y., Verschelde, J., eds., Special Issue on Symbolic–
Numerical Algorithms. Theoretical Comp. Sci., 409, 2, 255–268, 2008.

[23] Björck, Å., Numerical Methods for Least Squares Problems. SIAM, 1996.

25

[24] Bondyfalat, D., Mourrain, B., Pan, V.Y., Computation of a specified root
of a polynomial system of equations using eigenvectors. Linear Alg. Appls.,
319, 193–209, 2000. Also Proc. ISSAC, 252–259, ACM Press, 1998.

[25] Borodin, A., Munro, I., Computational Complexity of Algebraic and Nu-
meric Problems. American Elsevier, New York, 1975.

[26] Brönnimann, H., Emiris, I.Z., Pan, V.Y., Pion, S., Sign determination in
residue number systems. Theor. Comp, Science, 210 (1), 173–197, 1999.

[27] Buchberger, B., Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. Disserta-
tion, University of Innsbruck, Austria, 1965.

[28] Buchberger, B., A theoretical basis for the reduction of polynomials to
canonical form. ACM SIGSAM Bulletin, 10(3), 19–29, 1976.

[29] Buchberger, B., Gröbner bases: An algorithmic method in polynomial
ideal theory. In Recent Trends in Multidimensional Systems Theory, Bose,
N.K., Ed., 184–232. D. Reidel, Dordrecht (Holland), 1985.

[30] Buchberger, B., Collins, G.E., Loos, R., Albrecht, R., eds. Computer
Algebra: Symbolic Algebraic Computation. Springer, 2nd edition, 1983.

[31] Bürgisser, P., Clausen, M., Shokrollahi, M.A., Algebraic Complexity The-
ory. Springer, Berlin, 1997.

[32] Busé, L., D’Andrea, C. Inversion of parameterized hypersurfaces by means
of subresultants. In Proc. ISSAC, 65–71, ACM Press, 2004.

[33] Busé, L., Elkadi, M., Mourrain, B. Residual resultant of complete inter-
section. J. Pure & Applied Algebra, 164, 35–57, 2001.

[34] Busé, L., Elkadi, M., Mourrain, B., eds. Special Issue on Algebraic–
Geometric Computations, Theor. Comp. Science, 392 (1-3), 1-178, 2008.

[35] Canny, J., Some Algebraic and Geometric Computations in PSPACE. In
Proc. ACM Symp. Theory of Computing, 460–467, 1988.

[36] Canny, J., Generalized characteristic polynomials. J. Symbolic Computa-
tion, 9(3), 241–250, 1990.

[37] Canny, J., Emiris, I.Z., A Subdivision-Based Algorithm for the Sparse
Resultant, J. ACM, 47(3):417–451, 2000. Also in Proc. AAECC’10, LNCS,
263, 89–104, Springer, 1993.

[38] Canny, J., Kaltofen, E., Lakshman, Y., Solving systems of non-linear
polynomial equations faster. In Proc. ISSAC, 121–128, ACM, 1989.

[39] Canny, J., Manocha, D., Efficient techniques for multipolynomial resultant
algorithms. In Proc. ISSAC, 85–95, ACM Press, 1991.

26

[40] Canny, J., Pedersen, P., An algorithm for the Newton resultant. Technical
Report 1394, Computer Science Dept., Cornell University, 1993.

[41] Cardinal, J.-P., Mourrain, B., Algebraic approach of residues and appli-
cations. In The Math. of Numerical Analysis, Lects. in Applied Math., 32,
189–210. AMS, Providence, RI, 1996.

[42] Chen, F., Cox, D.A., Liu, Y., The mu-basis and implicitization of a ratio-
nal parametric surface. J. Symbolic Computation, 39(6):689–706, 2005.

[43] Chen, Z., Storjohann, A., A BLAS based C library for exact linear algebra
on integer matrices. In Proc. ISSAC, 92–99, ACM Press, 2005.

[44] Clarkson, K.L., Safe and effective determinant evaluation. Proc. IEEE
FOCS, 387–395, IEEE Computer Society Press, 1992.

[45] Collins, G.E., Akritas, A., Polynomial real root isolation using Descartes’
rule of signs. In SYMSAC ’76, 272–275, ACM Press, NY, 1976.

[46] Coppersmith, D., Solving homogeneous linear equations over GF(2) via
block Wiedemann algorithm. Math. of Comput., 62(205), 333–350, 1994.

[47] Coppersmith, D., Winograd, S., Matrix multiplication via arithmetic pro-
gressions. J. Symbolic Computation, 9(3), 251–280, 1990.

[48] Cohn, H., Kleinberg, R., Szegedy, B., Umans, C., Group-theoretic Algo-
rithms for Matrix Multiplication, Proc. IEEE FOCS, 379–388, 2005.

[49] Cox, D.A., Gröbner bases: a sampler of recent developments. In Proc.
ISSAC, 387–388, ACM, 2007.

[50] Cox, D., Little, J., O’Shea, D. Ideals, Varieties, and Algorithms, 2nd
edition. Undergraduate Texts in Mathematics, Springer, New York, 1997.

[51] Cox, D., Little, J., O’Shea, D. Using Algebraic Geometry, 2nd edition.
Graduate Texts in Mathematics, 185, Springer, New York, 2005.

[52] D’Andrea, C., Macaulay-style formulas for the sparse resultant. Trans. of
the AMS, 354, 2595–2629, 2002.

[53] D’Andrea, C., Krick, T., Szanto, A., Multivariate Subresultants in Roots.
J. Algebra, 302(1), 16–36, 2006.

[54] D’Andrea, C., Emiris, I.Z., Computing Sparse Projection Operators. In
Symbolic Computation: Solving Equations in Algebra, Geometry, and En-
gineering, 121–139, AMS, Providence, RI, 2001.

[55] Daney, D., Emiris, I.Z., Robust Parallel Robot Calibration with Partial
Information. In Proc. IEEE Intern. Conf. Robotics Automation, Seoul, pp.
3262–3267, 2001.

27

[56] Demmel, J.J.W., Applied Numerical Linear Algebra. SIAM, 1997.

[57] Dickenstein, A., Emiris, I.Z., Multihomogeneous resultant formulae by
means of complexes. J. Symbolic Comp., 36, 317–342, 2003.

[58] Dickenstein, A., Emiris, I.Z., editors. Solving Polynomial Equations:
Foundations, Algorithms and Applications. in Algorithms and Compu-
tation in Mathematics, 14, Springer, Berlin, 2005.

[59] Dickenstein, A., Sturmfels, B., Elimination theory in codimension 2. J.
Symb. Comp., 34(2):119–135, 2002.

[60] Dixon, A.L., The elimination of three quantics in two independent vari-
ables. In Proc. London Mathematical Society, 6, 468–478, 1908.

[61] Dongarra, J.J., Duff, I.S., Sorensen, D.C. and Van Der Vorst, H.A., Nu-
merical Linear Algebra for High-Performance Computers, SIAM, 1998.

[62] Dongarra, J., Bunch, J., Moler, C., and Stewart, P. LINPACK Users’
Guide. SIAM, Philadelphia, PA, 1978.

[63] Du, Z., Sharma, V., Yap, C.K., Amortized bound for root isolation via
Sturm sequences. [230], pp. 113–129.

[64] Duff, I.S., Erisman, A.M. and Reid, J.K., Direct Methods for Sparse Ma-
trices. Clarendon Press, Oxford, England, 1986.

[65] Dumas, J.-G., Gautier, T., Giesbrecht, M., Giorgi, P., Hovinen, B.,
Kaltofen, E., Saunders, B.D., Turner, W.J., and Villard, G. LinBox:
A generic library for exact linear algebra. In Cohen, A.M., Gao, X.-S.,
Takayama, N., eds., Proc. ICMS 200, 40-50, Beijing, China, 2002.

[66] Dumas, J-G., Gautier, T., Pernet, C., Finite field linear algebra subrou-
tines. In Proc. ISSAC, 63–74, ACM Press, 2002.

[67] Dumas, J-G., Giorgi, P., Pernet, C., Finite field linear algebra package. In
Proc. ISSAC, 118–126, ACM Press, 2004.

[68] Eberly, W., Giesbrecht, M., Giorgi, P., Storjohann, A., Villard, G., Faster
inversion and other black box matrix computations using efficient block
projections. In Proc. ISSAC, 143–150, ACM Press, 2007.

[69] Eberly, W., Giesbrecht, M., Villard, G., On computing the determinant
and Smith form of an integer matrix. Proc. IEEE FOCS, 675–685, 2000.

[70] Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S.,
Wolpert, N., A Descartes Algorithm for Polynomials with Bit-Stream
Coefficients. In CASC’2005, LNCS, 3718, 38–149. Springer, 2005.

[71] Eigenwillig, A., Sharma, V., Yap, C.K., Almost tight recursion tree
bounds for the Descartes method. Proc. ISSAC, 71–78, ACM, 2006.

28

[72] Elkadi, M., Mourrain, B., Algorithms for residues and Lojasiewicz expo-
nents. J. Pure & Appl. Algebra, 153, 27–44, 2000.

[73] Emiris, I.Z., On the complexity of sparse elimination. J. Complexity, 12,
134–166, 1996.

[74] Emiris, I.Z., Matrix Methods for Solving Algebraic Systems, In Symbolic
Algebraic Methods and Verification Methods, Springer, Wien, pp. 69–78,
2001. Also arxiv.org/abs/1201.5810, 2011.

[75] Emiris, I.Z., Canny, J.F., Efficient incremental algorithms for the sparse
resultant and the mixed volume. J. Symb. Comput., 20(2), 117–149, 1995.

[76] Emiris, I.Z., Galligo, A., Tsigaridas, E.P., Random polynomials and ex-
pected complexity of bisection methods for real solving. Proc. ISSAC,
235–242, ACM Prss, 2010.

[77] Emiris, I.Z., Konaxis, C., Single-lifting Macaulay-type formulae of gener-
alized unmixed sparse resultants, J. Symb. Comp., 46(8):919–942, 2011.

[78] Emiris, I.Z., Mantzaflaris, A., Multihomogeneous resultant matrices for
systems with scaled support. In Proc. ISSAC, 143–150, ACM, 2009.

[79] Emiris, I.Z., Mourrain, B. Matrices in elimination theory. J. Symbolic
Computation, 28, 3–44, 1999.

[80] Emiris, I.Z., Mourrain, B., Pan, V.Y., eds. Special Issue on Algebraic and
Numerical Algorithms, Theor. Comp. Science, 315, 307–672, 2004.

[81] Emiris, I.Z., Mourrain, B., Tsigaridas, E.P., Real Algebraic Numbers:
Complexity Analysis and Experimentation. In Reliable Implementations
of Real Number Algorithms: Theory and Practice, LNCS, Springer, 2007.

[82] Emiris, I.Z., Mourrain, B., Tsigaridas, E.P., The DMM Bound: Multi-
variate (Aggregate) Separation Bound. In Proc. ISSAC, 242–250, ACM
Press, 2010.

[83] Emiris, I.Z., Pan, V.Y., Symbolic and numeric methods for exploiting
structure in constructing resultant matrices. J. Symb. Comp., 33, 393–
413, 2002.

[84] Emiris I.Z., Pan, V.Y., Improved algorithms for computing determinants
and resultants. J. Complexity, 21 (1), 43–71, 2005. Also Proc. CASC’03,
(E. W. Mayr, V. G. Ganzha, E. V. Vorozhtzov, eds.) 81–94, 2003.

[85] Emiris, I.Z., Tzoumas, G.M., Exact and efficient evaluation of the InCircle
predicate for parametric ellipses and smooth convex objects, Computer-
Aided Design, 40(6):691–700, 2008.

[86] Faugère, J.-C., A new efficient algorithm for computing Gröbner bases
(F4). J. Pure & Applied Algebra, 139, 61–88, 1999.

29

[87] Faugère, J.-C., A new efficient algorithm for computing Gröbner bases
w/o Reduction to Zero (F5). In Proc. ISSAC, 75–83, ACM, 2002.

[88] Faugère, J.-C., Gianni, P., Lazard, D., Mora, T., Efficient computation of
zero-dimensional Gröbner bases by change of ordering. J. Symbolic Com-
putation, 16(4), 329–344, 1993.

[89] Faugère, J-C., Lazard, D., The Combinatorial Classes of Parallel Manip-
ulators. Mechanism and Machine Theory, 30, 765–776, 1995.

[90] Faugère, J.-C., Levy-dit-Vehel, F., Perret, L., Cryptanalysis of MinRank.
In Proc. CRYPTO, pp. 280–296, 2008.

[91] Fortune, S., An Iterated Eigenvalue Algorithm for Approximating Roots
of Univariate Polynomials. J. Symbolic Comp., 33 (5), 627–646, 2002.

[92] Foster, L.V., Generalizations of Laguerre’s method: higher order methods.
SIAM J. Numer. Anal., 18, 1004–1018, 1981.

[93] Garbow, B.S. et al., Matrix Eigensystem Routines: EISPACK Guide Ex-
tension. Springer, New York, 1972.

[94] von zur Gathen, J., Gerhard, J., Modern Computer Algebra. Cambridge
U. Press, Cambridge, 2003 (2nd edition).

[95] Geddes, K.O., Czapor, S.R., Labahn, G., Algorithms for Computer Alge-
bra. Kluwer Academic, 1992.

[96] Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V., Discriminants, Resul-
tants and Multidimensional Determinants. Birkhäuser, Boston, 1994.

[97] George, A., Liu, J.W.-H., Computer Solution of Large Sparse Positive
Definite Linear Systems. Prentice Hall, Englewood Cliffs, NJ, 1981.

[98] Gilbert, J.R., Schreiber, R., Highly parallel sparse Cholesky factorization.
SIAM J. on Scientific Computing, 13, 1151–1172, 1992.

[99] Gilbert, J.R., Tarjan, R.E., The analysis of a nested dissection algorithm.
Numer. Math., 50, 377–404, 1987.

[100] Golub, G.H., Van Loan, C.F., Matrix Computations, 3rd ed., Johns Hop-
kins University Press, Baltimore, MD, 1996.

[101] Greenbaum, A., Iterative Methods for Solving Linear Systems. SIAM Pub-
lications, Philadelphia, PA, 1997.

[102] Greuel, G.-M., Pfister, G. A Singular Introduction to Commutative Al-
gebra (with contributions by O. Bachmann, C. Lossen, H. Schönemann).
Springer, 2002.

30

[103] Halko, N., Martinsson, P.G., Tropp, J.A., Finding Structure with Ran-
domness: Probabilistic Algorithms for Constructing Approximate Matrix
Decompositions, SIAM Review, 53, 2, 217–288, 2011.

[104] Hansen, E., Patrick, M., Rusnak, J., Some modifications of Laguerre’s
method. BIT, 17, 409–417, 1977.

[105] Heath, M.T., Ng, E., Peyton, B.W., Parallel algorithms for sparse linear
systems. SIAM Review, 33, 420–460, 1991.

[106] Hemmer, M., Tsigaridas, E.P., Zafeirakopoulos, Z., Emiris, I.Z., Karave-
las, M., Mourrain, B., Experimental evaluation and cross-benchmarking
of univariate real solvers. In Proc. SNC’09, Kyoto, Japan, 2009.

[107] Higham, N.J., Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, 2002 (second edition).

[108] Hoffmann, C.M., Sendra, J.R., Winkler, F. Special Issue on Parametric
Algebraic Curves and Applications, J. Symbolic Comp., 23, 1997.

[109] Jenkins, M.A., Traub, J.F., A three-stage variable-shift iteration for poly-
nomial zeros and its relation to generalized Rayleigh iteration. Numer.
Math., 14, 252–263, 1970.

[110] Jouanolou, J.-P., Formes d’Inertie et Résultant : Un Formulaire. Adv. in
Math., 126:119–250, 1997. Also TR 499/P-288, IRMA, Strasbourg, 1992.

[111] Kailath, T., Sayed, A., eds. SIAM volume on Fast Reliable Algorithms for
Matrices with Structure, SIAM Publications, Philadelphia, 1999.

[112] Kaltofen, E., Pan, V.Y., Processor efficient parallel solution of linear sys-
tems over an abstract field. In Proc. SPAA’91, 180–191, ACM, NY, 1991.

[113] Kaltofen, E., Pan, V.Y., Processor-efficient parallel solution of linear sys-
tems II: the positive characteristic and singular cases. In Proc. FOCS’92,
714–723, IEEE Computer Society, Los Alamitos, CA, 1992.

[114] Kaltofen, E., Villard, G., Computing the sign or the value of the determi-
nant of an integer matrix, a complexity survey. J. Computational Applied
Math., 162(1), 133–146, 2004.

[115] Kaporin, I., The aggregation and cancellation techniques as a practical
tool for faster matrix multiplication. [80], pp. 469–510.

[116] Kapur, D., Geometry theorem proving using Hilbert’s Nullstellensatz. J.
Symbolic Computation, 2, 399–408, 1986.

[117] Kapur, D., Lakshman, Y.N., Elimination methods an introduction. In
Symbolic and Numerical Computation for Artificial Intelligence. Donald,
B., Kapur, D., and Mundy, J., Eds., Academic Press, 1992.

31

[118] Kapur, D., Saxena, T., Comparison of various multivariate resultant for-
mulations. In in Proc. ISSAC, 187–195, ACM, 1995.

[119] Khetan, A., The resultant of an unmixed bivariate system. J. Symbolic
Computation, 36, 425–442, 2003.

[120] Kirrinnis, P., Polynomial factorization and partial fraction decomposition
by simultaneous Newton’s iteration. J. of Complexity, 14, 378–444, 1998.

[121] Kolda, T. G., and Bader, B. W., Tensor Decompositions and Applications,
SIAM Review, 51(3), 455–500, 2009.

[122] Kotsireas, I., Mourrain, B., Pan, V. Y., eds., Special Issue on Algebraic
Numerical Algorithms. Theor. Comp. Sci., 412, 16, 1443–1543, 2011.

[123] Kreuzer, M., and Robbiano, L., Computational Commutative Algebra 1.
Springer Verlag, Heidelberg, 2000.

[124] Laderman, J., Pan, V.Y., Sha, H.X., On practical algorithms for acceler-
ated matrix multiplication. Lin. Alg. Appls., 162–164, 557–588, 1992.

[125] Lakshman, Y.N., Saunders, B.D., Sparse polynomial interpolation in non-
standard bases. SIAM J. Comput., 24(2), 387–397, 1995.

[126] Lawson, C.L., Hanson, R.J., Solving Least Squares Problems. Prentice-
Hall, NJ, 1974, and (with a survey of recent developments) SIAM, 1995.

[127] Lazard, D., Resolution des systemes d’equation algebriques. Theoretical
Comput. Sci., 15, 77–110, 1981. In French.

[128] Lenstra, A.K., Lenstra, H.W., Lovász, L., Factoring polynomials with
rational coefficients. Math. Ann., 261, 515–534, 1982.

[129] Lickteig, T., Roy, M.-F., Sylvester–Habicht sequences and fast Cauchy
index computation. J. Symbolic Comp., 31(3), 315–341, 2001.

[130] Lipton, R.J., Rose, D., Tarjan, R.E., Generalized nested dissection. SIAM
J. on Numer. Analysis, 16(2), 346–358, 1979.

[131] Macaulay, F.S., Algebraic theory of modular systems. Cambridge Tracts
19, Cambridge, 1916.

[132] Madsen, K., A root-finding algorithm based on Newton’s method. BIT,
13, 71–75, 1973.

[133] Mahoney, M. W., Maggioni, M., Drineas, P., Tensor-CUR Decompositions
for Tensor-based Data. SIAM J. Matrix Anal. Appls., 30, 2, 957–987, 2008.

[134] Manocha, D., Algebraic and Numeric Techniques for Modeling and
Robotics. Ph.D. Thesis, CSD, DEECS, UC, Berkeley, CA, 1992.

32

[135] Mayr, E.W., Meyer, A.R., The Complexity of the Finite Containment
Problem for Petri Nets. J. ACM, 28(3), 561–576, 1981.

[136] McCormick, S., Ed., Multigrid Methods. SIAM, Philadelphia, 1987.

[137] McNamee, J.M., A 2000 Updated Supplementary Bibliography on Roots
of Polynomials. J. Comput. and Applied Mathematics, 142, 433–434, 2002.

[138] McNamee, J.M., Numerical Methods for Roots of Polynomials (Part 1),
Elsevier, Amsterdam, 2007.

[139] McNamee, J.M., Pan, V.Y., Efficient polynomial root-refiners: a survey
and new record estimates. Computers Math. (Appls.), 63, 239–254, 2012.

[140] McNamee, J.M., Pan, V.Y., Numerical Methods for Roots of Polynomials,
Part 2, 780+XIX pages, submitted to Elsevier publishers.

[141] Mehlhorn, K., Ray, S., Faster algorithms for computing Hong’s bound on
absolute positiveness. J. Symbolic Computation, 45(6), 677 – 683, 2010.

[142] Mehlhorn, K., Sagraloff, M., A deterministic algorithm for isolating real
roots of a real polynomial. J. Symb. Computation, 46(1), 70–90, 2011.

[143] Mignotte, M., Mathematics for Computer Algebra. Springer-Verlag, 1992.

[144] Mignotte, M., Stefanescu, D., Polynomials: An algorithmic approach.
Springer, 1999.

[145] Miranker, W.L., Pan, V.Y., Methods of Aggregations. Linear Algebra and
Its Applications, 29, 231–257, 1980.

[146] Mourrain, B., Pan, V.Y., Asymptotic acceleration of solving polynomial
systems. Proc. STOC’98, 488–496, ACM Press, New York, 1998.

[147] Mourrain, B. , Pan, V.Y., Multivariate polynomials, duality and struc-
tured matrices. J. of Complexity, 16 (1), 110–180, 2000.

[148] Mourrain, B., Pan, V.Y., Ruatta, O., Accelerated solution of multivariate
polynomial systems of equations. SIAM J. Comp., 32, 2, 435–454, 2003.
Also Proc. Smalefest 2000, Foundations of Comp. Math. Series, 267–294,
World Scientific, 2002.

[149] Mourrain, B., Pavone, J.-P., Trébuchet, P., Tsigaridas, E.P., synaps: a
library for symbolic-numeric computing. In Proc. 8th Int. Symp. Effective
Methods in Alg. Geom. (MEGA), Italy, 2005. (software presentation).

[150] Mourrain, B., Trébuchet, P., Solving projective complete intersection
faster. J. Symbolic Computation, 33(5), 679–699, 2002.

[151] Mourrain, B., Vrahatis, M., Yakoubsohn, J.C., On the complexity of
isolating real roots and computing with certainty the topological degree.
J. Complexity, 18(2), 2002.

33

[152] Neff, C.A., Reif, J.H., An O(nl+ε) algorithm for the complex root problem.
in Proc. IEEE FOCS, 540–547, 1994.

[153] Nguyen, P.Q., Valle, B. (Eds.) The LLL Algorithm, Survey and Appli-
cations. Series: Information Security and Cryptography, XIV, 496 pp.,
Springer, 2010, ISBN 978-3-642-02294-4.

[154] Ortega, J.M., Voight, R.G., Solution of partial differential equations on
vector and parallel computers. SIAM Review, 27, 2, 149–240, 1985.

[155] Oseledets, I. V., Tyrtyshnikov, E. E., Breaking the curse of dimensionality,
or how to use SVD in many dimensions. SISC, 31, 5, 3744–3759, 2009.

[156] Pan, V. Y., On schemes for the evaluation of products and inverses of
matrices (in Russian), Uspekhi Mat. Nauk, 27, 5 (167), 249–250, 1972.

[157] Pan, V. Y., Strassen’s algorithm is not optimal. Trilinear technique of
aggregating. Proc. IEEE FOCS, 166–176, 1978.

[158] Pan, V.Y., How can we speed up matrix multiplication? SIAM Rev.,
26(3), 393–415, 1984.

[159] Pan, V.Y., How to Multiply Matrices Faster, volume 179 of Lecture Notes
in Computer Science. Springer Verlag, Berlin, 1984.

[160] Pan, V.Y., Complexity of parallel matrix computations. Theoretical Com-
puter Science, 54, 65–85, 1987.

[161] Pan, V.Y., Computing the determinant and the characteristic polynomials
of a matrix via solving linear systems of equations. Information Processing
Letters, 28, 71–75, 1988.

[162] Pan, V. Y., On computations with dense structured matrices. Math. of
Comp., 55, 191, 179–190, 1990. Also Proc. ISSAC, 34–42, ACM, 1989.

[163] Pan, V.Y., Complexity of computations with matrices and polynomials.
SIAM Review, 34(2), 225–262, 1992.

[164] Pan, V.Y., Parallel solution of sparse linear and path systems. In Synthe-
sis of Parallel Algorithms, Reif, J.H., Ed., chapter 14, 621–678. Morgan
Kaufmann, San Mateo, CA, 1993.

[165] Pan, V.Y., Parallel computation of a Krylov matrix for a sparse and struc-
tured input. Mathematical and Computer Modelling, 21(11), 97–99, 1995.

[166] Pan, V.Y., Optimal and nearly optimal algorithms for approximating
polynomial zeros. Computers in Mathematics (with Applications), 31(12),
97–138, 1996. Also STOC’95, 741–750, ACM, Press, New York, 1995.

[167] Pan, V.Y., Parallel computation of polynomial GCD and some related
parallel computations over abstract fields. Theor. Comp. Science, 162(2),
173–223, 1996.

34

[168] Pan, V.Y., Solving a polynomial equation: Some history and recent
progress. SIAM Review, 39(2), 187–220, 1997.

[169] Pan, V.Y., Solving polynomials with computers. American Scientist, 86,
62–69, January–February 1998.

[170] Pan, V.Y., Some recent algebraic/numerical algorithms. Electronic Proc.
IMACS/ACA’98, 1998.
www-troja.fjfi.cvut.cz/aca98/sessions/approximate.

[171] Pan, V.Y., Numerical computation of a polynomial GCD and extensions.
Information and Computation, 167(2), 71–85, 2001. Also Proc. SODA’98,
68–77, ACM Press, and SIAM Publications, 1998.

[172] Pan, V.Y., On approximating complex polynomial zeros: Modified
quadtree (Weyl’s) construction and improved Newton’s iteration. J. of
Complexity, 16 (1), 213–264, 2000.

[173] Pan, V.Y., Structured Matrices and Polynomials: Unified Superfast Algo-
rithms. Birkhäuser/Springer, Boston/New York, 2001.

[174] Pan, V.Y., Univariate polynomials: nearly optimal algorithms for factor-
ization and rootfinding. J. Symbolic Computations, 33 (5), 701–733, 2002.

[175] Pan, V.Y., On theoretical and practical acceleration of randomized com-
putation of the determinant of an integer matrix. Zapiski Nauchnykh Sem-
inarov POMI (in English), 316, 163–187, St. Petersburg, Russia, 2004.
Also available at http://comet.lehman.cuny.edu/vpan/

[176] Pan, V.Y., Amended DSeSC power method for polynomial root-finding.
Computers and Math. (with Applications), 49 (9–10), 1515–1524, 2005.

[177] Pan, V.Y., Newton’s iteration for matrix inversion, advances and exten-
sions. pp. 364–381, in Matric Methods: Theory, Algorithms & Applica-
tions (eds. V. Olshevsky, E. Tyrtyshnikov), World Scientific, 2010.

[178] Pan, V.Y., Nearly optimal solution of rational linear systems of equations
with symbolic lifting and numerical initialization. Computers & Math.
with Applications, 62, 1685–1706, 2011.

[179] Pan, V.Y., Branham, S., Rosholt, R., Zheng, A., Newton’s iteration for
structured matrices and linear systems of equations. [111], Ch. 7, 189–210.

[180] Pan, V.Y., Grady, D., Murphy, B., Qian, G., Rosholt, R.E., Schur aggre-
gation for linear systems and determinants. pp. 255–268 in [22].

[181] Pan, V.Y., Ivolgin, D., Murphy, B., Rosholt, R.E., Tang, Y., Wang, X.,
Root-finding with eigen-solving. [230], pp. 185–210.

35

[182] Pan, V.Y., Ivolgin, D., Murphy, B., Rosholt, R.E., Tang, Y., Yan, X.,
Additive preconditioning for matrix computations. Linear Algebra and
Applications, 432, 1070–1089, 2010.

[183] Pan, V.Y., Kunin, M., Rosholt, R.E., Kodal, H., Homotopic residual cor-
rection processes. Math. of Computation, 75, 345–368, 2006.

[184] Pan, V.Y., Landowne, E., Sadikou, A., Univariate polynomial division
with a remainder by means of evaluation and interpolation. Information
Processing Letters, 44, 149–153, 1992.

[185] Pan, V.Y., Murphy, B., Rosholt, R.E., Unified nearly optimal algorithms
for structured integer matrices. Operator Theory: Advances and Applica-
tions, 199, 359–375, Birkhaüser, Basel, 2010.

[186] Pan, V.Y., Preparata, F.P., Work–preserving speed-up of parallel matrix
computations. SIAM J. Comput., 24(4), 811–821, 1995.

[187] Pan, V.Y., Qian, G., Randomized preprocessing of homogeneous linear
systems of equations. Linear Algebra and Applications, 432, 3272–3318,
2010.

[188] Pan, V.Y., Qian, G., Randomization, augmentation and aggregation in
matrix computations, preprint.

[189] Pan, V.Y., Qian, G., Zheng, A., Randomized preconditioning of the MBA
algorithm. Proc. ISSAC, 281–288, ACM, 2011.

[190] Pan, V.Y., Qian, G., Zheng, A., Randomized preprocessing versus pivot-
ing. Linear Algebra and Its Applications, in print.

[191] Pan, V.Y., Qian, G., Zheng, A., Real and complex polynomial root-finding
via eigen-solving and Randomization. Preprint, 2012.

[192] Pan, V.Y., Qian, G., Zheng, A., Randomized matrix computations,
preprint.

[193] Pan, V. Y., Qian, G., Zheng, A., Chen, Z., Matrix computations and
polynomial root-finding. Lin. Alg. Applics., 434, 854–879, 2011.

[194] Pan, V.Y., Rami, Y., Wang, X., Structured matrices and Newton’s itera-
tion: unified approach. Linear Algebra Applics., 343/344, 233–265, 2002.

[195] Pan, V.Y., Reif, J.H., Compact multigrid. SIAM J. on Scientific and
Statistical Computing, 13(1), 119–127, 1992.

[196] Pan, V.Y., Reif, J.H., Fast and efficient parallel solution of sparse linear
systems. SIAM J. Comp., 22(6), 1227–1250, 1993.

[197] Pan, V.Y., Schreiber, R., An improved Newton iteration for the gener-
alized inverse of a matrix, with applications. SIAM Journal on Scientific
and Statistical Computing, 12(5), 1109–1131, 1991.

36

[198] Pan, V.Y., Wang, X., Inversion of displacement operators. SIAM J. on
Matrix Analysis and Applications, 24(3), 660–677, 2003.

[199] Pan, V.Y., Wang, X., Degeneration of integer matrices modulo an integer.
Linear Algebra and Its Applications, 429, 2113–2130, 2008.

[200] Pan, V.Y., Yu, Y., Certification of numerical computation of the sign of
the determinant of a matrix. Algorithmica, 30, 708–724, 2001. Also Proc.
SODA ’99, 715–724, ACM/SIAM, 1999.

[201] Pan, V.Y., Yan, X., Additive preconditioning, eigenspaces, and the inverse
iteration. Linear Algebra & Its Applications, 430, 186–203, 2009.

[202] Pan, V. Y., Zheng, A., New progress in real and complex polynomial
root-finding. Computers and Math. (with Applications) 61, 1305–1334.
Also Proc. ISSAC, 219–226, ACM Press, 2010.

[203] Pan, V. Y., Zheng, A., Root-finding by expansion with independent con-
straints. Computers and Math. (with Applications), 62, 3164-3182, 2011.

[204] Parlett, B., Symmetric Eigenvalue Problem. Prentice Hall, 1980.

[205] Quinn, M.J., Parallel Computing: Theory and Practice. McGraw-Hill,
New York, 1994.

[206] Raghavan M., Roth, B., Solving polynomial systems for the kinemat-
ics analysis and synthesis of mechanisms and robot manipulators. Trans.
ASME, Special Issue, 117, 71–79, 1995.

[207] Reischert, D., Asymptotically fast computation of subresultants. In Proc.
ISSAC, 233–240, ACM, 1997.

[208] Ritt, J.F., Differential Algebra. AMS, New York, 1950.

[209] Rouillier, F., Solving zero-dimensional systems through the rational uni-
variate representation. AAECC Journal, 9, 433–461, 1999.

[210] Rouillier, F., Zimmermann, P., Efficient isolation of polynomial’s real
roots. J. Computational & Applied Math., 162(1):33–50, 2004.

[211] Sagraloff, M., When Newton meets Descartes: A simple and fast algorithm
to isolate the real roots of a polynomial. CoRR, abs/1109.6279, 2011.

[212] Sankar, A., Spielman, D., Teng, S.-H., Smoothed analysis of the condition
numbers and growth factors of matrices, SIAM J. Matrix Analysis, 28(2),
446–476, 2006.

[213] Schönhage, A., The fundamental theorem of algebra in terms of compu-
tational complexity. Math. Dept., Univ. Tübingen, Germany, 1982.

[214] Sharma, V., Complexity of real root isolation using continued fractions.
Theor. Comput. Sci., 409(2):292–310, 2008.

37

[215] Smith, B.T. et al., Matrix Eigensystem Routines: EISPACK Guide, 2nd
ed. Springer, New York, 1970.

[216] Stetter, H., Numerical polynomial algebra. SIAM, Philadelphia, 2004.

[217] Stewart, G.W., Matrix Algorithms, Vol I: Basic Decompositions. Vol II:
Eigensystems. SIAM, Philadelphia, 1998.

[218] Storjohann, A., The shifted number system for fast linear algebra on in-
teger matrices. Journal of Complexity, 21(4), 609–650, 2005.

[219] Stothers, A. J., On the Complexity of Matrix Multiplication. Ph.D. Thesis,
University of Edinburgh, 2010.

[220] Sturmfels, B., Sparse elimination theory. Proc. Comp.. Alg. Geom. Com-
mut. Algebra, Eisenbud, D., Robbiano, L., Eds., Cortona, Italy, 1991.

[221] Tarjan, R.E., A unified approach to path problems. J. of ACM, 28(3),
577–593 and 594–614, 1981.

[222] Trefethen, L.N., Bau III, D., Numerical Linear Algebra. SIAM, 1997.

[223] Tsigaridas, E.P., Improved complexity bounds for real root isolation using
Continued Fractions. In S. Ratschan, ed., Proc. 4th Int’l Conf. on Math.
Aspects Comp. Inf. Sci. (MACIS), 226–237, Beijing, China, 2011.

[224] Tsigaridas, E.P., Emiris, I.Z., On the complexity of real root isolation
using Continued Fractions. Theor. Computer Sci., 392:158–173, 2008.

[225] Van Barel, M., Vandebril, R., Van Dooren, P., Frederix, K., Implicit dou-
ble shift QR-algorithm for companion matrices. Numer. Math. 116, 2,
177–212, 2010.

[226] Vandebril, R., Van Barel, M., Golub, G. and Mastronardi, N., A bibliog-
raphy on semiseparable matrices, Calcolo, 42 (3–4), 249–270, 2005.

[227] Vincent, A.J.H., Sur la résolution des équations numériques. J. Math.
Pures Appl., 1:341–372, 1836.

[228] van der Vorst, H.A., Iterative Krylov Methods for Large Linear Systems.
Cambridge U. Press, Cambridge, 2003.

[229] Vassilevska Williams, V., Breaking the Coppersmith–Winograd barrier.
UC Berkeley and Stanford University, preprint, November 2011.

[230] Symbolic-Numeric Computation (Wang, D., Zhi, L. editors). Birkhäuser,
Basel/Boston, 2007.

[231] Wang, X., Pan, V.Y., Acceleration of Euclidean Algorithm and Rational
Number Reconstruction. SIAM J. of Computing, 32(2), 548–556, 2003.

38

[232] Watkins, D.S., The Matrix Eigenvalue Problem: GR and Krylov Subspace
Methods. SIAM, Philadelphia, PA, 2007.

[233] Wiedemann, D., Solving sparse linear equations over finite fields. IEEE
Trans. Inf. Theory IT–32, 54–62, 1986.

[234] Wilkinson, J.H., The Algebraic Eigenvalue Problem. Clarendon Press, Ox-
ford, England, 1965.

[235] Winkler, F., Polynomial Algorithms in Computer Algebra. Springer, 1996.

[236] Wu, W., Basis principles of mechanical theorem proving in elementary
geometries. J. Syst. Sci. and Math Sci., 4(3), 207–235, 1984.

[237] Yap, C.K., Fundamental Problems of Algorithmic Algebra. Oxford Uni-
versity Press, New York, 2000.

[238] Zippel, R., Effective Polynomial Computations. Kluwer Academic, 1993.

Further Information

The books and special issues of journals [1, 5, 21, 25, 31, 58, 80, 95, 173, 216, 238]
provide a broader introduction to the general subject and further bibliography.

There are well-known libraries and packages of subroutines for the most
popular numerical matrix computations, in particular, [62] for solving linear
systems of equations, [93], [215], ARPACK, and PARPACK for approximating
matrix eigenvalues, and [3] for both of the two latter computational problems.
Comprehensive treatment of numerical matrix computations and extensive bibli-
ography can be found in [100, 217], and there are many more specialized books
on them [6, 8, 61, 97, 101, 107, 204, 222, 234] as well as many survey arti-
cles [105, 154, 163] and thousands of research articles. Further applications to
the graph and combinatorial computations related to linear algebra are cited in
“Some Computations Related to Matrix Multiplication” and [164].

On parallel matrix computations see [98, 100, 105, 112, 113, 186] assum-
ing general input matrices, [98, 164, 196] assuming sparse inputs, [61] as-
suming banded inputs, and [21, 167, 173, 226] assuming dense structured in-
puts. On Symbolic-Numeric algorithms, see the books [21, 173, 230], surveys
[163, 168, 170], special issues [80, 22, 122], and the bibliography therein. For the
general area of exact computation and the theory behind algebraic algorithms
and computer algebra, see [9, 30, 50, 51, 58, 94, 95, 144, 235, 237, 143, 238].

There is a lot of generic software packages for exact computation, such as
synaps (www-sop.inria.fr/galaad/software/synaps/, [149]), a C++ open source
library devoted to symbolic and numeric computations with polynomials, al-
gebraic numbers and polynomial systems, which has been evolving into the
open source computer algebra system mathemagix (www.mathemagix.org);
ntl (www.shoup.net/ntl/) a high-performance C++ library providing data struc-
tures and algorithms for vectors, matrices, and polynomials over the integers and

39

finite fields; and exacus (www.mpi-inf.mpg.de/projects/Exacus, [11]), a C++ li-
brary for curves and surfaces that provides exact methods for solving polynomial
equations. A highly efficient tool is FGb(http://fgbrs.lip6.fr/salsa/Software) for
Gröbner basis, and RS for the rational univariate representation, and real so-
lutions of systems of polynomial equations and inequalities. Finaly, LinBox
(www.linalg.org and [65]) is a C++ library that provides exact high-performance
implementations of linear algebra algorithms.

This chapter does not cover the area of polynomial factorization. We refer
the interested reader to [94, 128, 153], and the bibliography therein.

The SIAM Journal on Matrix Analysis and Applications and Linear Algebra
and Its Applications are specialized on Matrix computations, Mathematics of
Computation and Numerische Mathematik are leading among numerous other
good journals on numerical computing.

The Journal of Symbolic Computation and the Foundations of Computa-
tional Mathematics specialize on topics in Computer Algebra, which are also
covered in the Journal of Computational Complexity, the Journal of Pure and
Applied Algebra and, less regularly, in the Journal of Complexity. Mathematics
for Computer Science and Applicable Algebra in Engineering, Communication
and Computing are currently dedicated to the subject of the chapter as well.
Theoretical Computer Science has become more open to algebraic–numerical
and algebraic–geometric subjects [22, 34, 80, 122].

The annual International Symposium on Symbolic and Algebraic Computa-
tion (ISSAC) is the main conference in computer algebra; these topics are also
presented at the bi-annual Conference MEGA and the newly founded SIAM con-
ference on Applications of Algebraic Geometry. They also appear, in the annual
ACM Conference on Computational Geometry, as well as at various Computer
Science conferences, including SODA, FOCS, and STOC.

Among many conferences on numerical computing, most comprehensive ones
are organized under the auspices of SIAM and ICIAM. The International Work-
shop on Symbolic-Numeric Algorithms can be traced back to 1997 (SNAP
in INRIA, Sophia Antipolis) and a special session in IMACS/ACA98 Confer-
ence in Prague, Czech Republic, in 1998 [170]. It restarted in Xi’an, China,
2005; Timishiora, Romania, 2006 (supported by IEEE), and London, Ontario,
Canada, 2007 (supported by ACM). The topics of Symbolic-Numerical Compu-
tation are also represented at the conferences on the Foundations of Computa-
tional Mathematics (FoCM) (meets every 3 years) and quite often at ISSAC.

40

	City University of New York (CUNY)
	CUNY Academic Works
	2012

	TR-2012001: Algebraic Algorithms
	Ioannis Z. Emiris
	Victor Y. Pan
	Elias P. Tsigaridas
	Recommended Citation

	chapter_12.DVI

