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Abstract—Distance and dissimilarity functions are of un-
doubted importance to Time Series Data Mining. There are
literally hundreds of methods proposed in the literature that
rely on a dissimilarity measure as the main manner to compare
objects. One notable example is the 1-Nearest Neighbor classi-
fication algorithm. These methods frequently outperform more
complex methods in tasks such as classification, clustering,
prediction, and anomaly detection. All these methods leave
open the distance or dissimilarity function, being Euclidean
distance (ED) and Dynamic Time Warping (DTW) the two
most used dissimilarity measures in the literature. This paper
empirically compares 48 measures on 42 time series data sets.
Our objective is to call the attention of the research community
about other dissimilarity measures besides ED and DTW,
some of them able to significantly outperform these measures
in classification. Our results show that Complex Invariant
Distance DTW (CIDDTW) significantly outperforms DTW and
that CIDDTW, DTW, CID, Minkowski L-p (p-norm difference
with data set-crafted “p” parameter), Lorentzian L-infinity,
Manhattan L-1, Average L-1/L-infinity (arithmetic average),
Dice distance, and Jaccard distance outperform ED, but only
CIDDTW, DTW, and CID outperform ED with statistical
significance.
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I. INTRODUCTION

In the last years, the Data Mining community has wit-

nessed a huge increase of interest for time series methods

and algorithms [1]. Such interest is justified by the innu-

merous applications that generate data across time. Virtually

every piece of information collected from human, natural,

and biological processes is susceptible to changes over time.

And the study of how these changes occur is oftentimes a

central issue to fully understand such processes.

Data Mining has contributed to the analysis of time series

with a plenitude of methods for classification, clustering,

motif discovery, anomaly detection, and time series predic-

tion, among other tasks [2]. And for all the aforementioned

tasks, a dissimilarity (or similarity) function frequently plays

a central role in the method computation. For instance,

dissimilarity measures are used in classification to assign

the class mode among the most similar instances to a query

example, a procedure known as k-nearest neighbor rule

(k-NN). Though simple, the k-nearest neighbor strategy

provides very competitive results, frequently outperforming

more complex methods, such as [3]. In clustering, most

procedures including partitional, hierarchical, and spectral

clustering rely on a dissimilarity function to measure the

similarity among objects. In the case of time series, recent

work suggests that the choice of clustering algorithm is much

less important than the choice of dissimilarity measure used,

with Dynamic Time Warping providing excellent results [4].

In anomaly detection, dissimilarity functions are frequently

used to detect anomalous instances. An instance too distant

from every other instance in the data set is considered

anomalous [5]. A recent survey on anomaly detection in

time series has shown that similarity-based methods provide

the best overall results [6].

In this work we conduct an experimental comparison

of dissimilarity and similarity measures for time series. In

order to have an objective measure to assess and compare

our results, we have restricted our analysis to classification

problems, due to the presence of a ground-truth. We have

evaluated 48 dissimilarity and similarity functions surveyed

in [7] augmented with DTW [8], a popular distance for time

series, and CID and CIDDTW [9], two complexity-invariant

distances. We have evaluated the measures in 42 publicly

available benchmark data sets from the UCR Time Series

Classification/Clustering Page [10].

Our results show that CIDDTW significantly outper-

forms DTW and that CIDDTW, DTW, CID, Minkowski Lp,

Lorentzian L∞, Manhattan L1, Average L1/L∞, Dice, and

Jaccard outperform ED, but only CIDDTW, DTW, and CID

outperform ED with statistical significance.

The remainder of this paper is organized as follows:

Section II briefly overviews our results as an introduction to

the next sections. Section III presents and discusses the dis-

similarity functions that outperform the Euclidean distance.

Section IV details our experimental methods. Section V

discusses our results in depth. And Section VI draws some

conclusions and presents potential future work.

II. RESULTS OVERVIEW

In this section we present an overview of our results.

This is certainly a unusual paper organization. However, in

lieu of including several pages long tables of experimental

data, we have decided not to describe in details the results

for all 48 measures we have evaluated. Thus, we show

average (over all data sets) results for all measures in this



section and select a subset of 9 measures that performed

better than the Euclidean distance for further discussion.

The Euclidean distance is a widely used measure for time

series classification due to its simplicity, computational

efficiency, and good empirical results [3]. We should note

here that all discarded dissimilarity measures have O(m)
computational complexity, where m is the length of the time

series. Therefore, the discarded functions provided worse

classification performance than the Euclidean distance and

required similar processing power.

Before we continue, the reader may have noted that

we often use the term “dissimilarity measures” instead of

“distance functions”. From the 38 dissimilarity measures

we analyse in this work, only 5 are guaranteed distance

functions, in the sense that they respect the requirements

for determining a metric space. Therefore, we refer to

those measures as “dissimilarity measures” for the sake

of simplicity. Since the linear scan version of k-nearest

neighbor does not require the properties of metrics, we can

safely use these measures for classification.

We have also analyzed 10 similarity measures. A simi-

larity measure gives a score that describes how similar two

objects are, in contrast with distances and dissimilarity mea-

sures, which give a score describing how much two items

differ. One should be only concerned that, when classifying

with the nearest neighbor approach, dissimilarities should be

minimized whilst similarities should be maximized.

Our study started with 45 similarity and dissimilarity

measures surveyed in [7]. The original survey was intended

for comparing probability density functions represented as

histograms. Such histogram H(X) has certain properties

that time series do not cope with. For instance, the sum-

mation of all values Hi(X) ∈ H(X) equals 1, and every

value in the histogram fits the interval [0, 1]. Nevertheless,

we successfully adapted each measure to our experiments

with time series and employed all of them in 1-nearest

neighbor classification. When two measures were equal or

proportional one to another, we excluded one of them. We

then augmented the initial set of measures to include DTW,

CID, and CIDDTW.

In Table I we present the mean accuracy rates for all 42

data sets, as well as the standard deviations for the estimation

of that statistics for each distance measure analyzed in this

paper. Out of the 48 measures analysed, only 9 of them

outperformed the Euclidean distance considering the average

accuracies. These measures will be further described and

analyzed in the next sections.

III. SELECTED DISSIMILARITY MEASURES

Because the Euclidean distance function is so prominently

used for classification with the k-NN classifier, we have

decided to use it as a baseline. Therefore, we have decided

to not include in this section the description of any dissimi-

larity measure that under-performed the Euclidean distance.

Table I
MEAN ACCURACY RATES OVER ALL DATA SETS

Measure Mean Std. Deviation

CIDDTW “Best Window” dissim. 0.8184 0.1374
DTW ”Best Window“ dissim. 0.8103 0.1419
DTW “Full Window” dissim. 0.7905 0.1519
CID Euclidean dissim. 0.7774 0.1460
Minkowski Lp distance 0.7660 0.1417
Lorentzian distance 0.7640 0.1484
Manhattan (City Block) distance 0.7627 0.1501
Avg L1/L∞ distance 0.7619 0.1500
Dice dissim. 0.7529 0.1479
Jaccard dissim. 0.7529 0.1479
Euclidean distance 0.7507 0.1493

Chebyshev L∞ distance 0.6719 0.1892
Hellinger dissim. 0.6408 0.1932
Kumar Johnson dissim. 0.5437 0.2556
Divergence dissim. 0.5128 0.1989
Soergel dissim. 0.4963 0.1843
Emanon 2 dissim. 0.4902 0.2232
Bhattacharyya similarity 0.4538 0.2912
Inner Product similarity 0.3586 0.3091
Dice similarity 0.3496 0.3135
Kumar similarity 0.3496 0.3135
Cosine similarity 0.3468 0.3133
Intersection similarity 0.3414 0.3021
Fidelity similarity 0.3310 0.2816
Clark dissim. 0.2938 0.2296
Kulczynski dissim. 0.2905 0.2304
Motyka dissim. 0.2778 0.2461
Sørensen dissim. 0.2778 0.2461
Max Symmetric χ dissim. 0.2720 0.2145
Pearson dissim. 0.2698 0.2033
Jensen Difference dissim. 0.2665 0.2503
Topsøe dissim. 0.2664 0.2503
Jeffrey dissim. 0.2659 0.2480
Kulczynski similarity 0.2653 0.2098
Square Chord dissim. 0.2647 0.2516
Wavehedges dissim. 0.2580 0.2119
Tanimoto dissim. 0.2561 0.2440
K Divergence dissim. 0.2503 0.2084
Motyka similarity 0.2503 0.2223
Vicis Wave Hedges dissim. 0.2501 0.2262
Squared χ2 dissim. 0.2417 0.2255
Additive Symm χ2 dissim. 0.2409 0.2184
Canberra dissim. 0.2408 0.2093
Neyman dissim. 0.2394 0.2264
Kullback dissim. 0.2394 0.2080
Taneja dissim. 0.2390 0.2150
Emanon 3 dissim. 0.2377 0.2298
Min Symmetric χ dissim. 0.2371 0.2213
Harmonic Mean similarity 0.2298 0.2188

The reader may refer to [7] for equations of all measures

discussed in this paper.

DTW is a widely known algorithm for pattern matching

which was introduced to the temporal data community in

1994 [8]. Though its implementation may involve some

caveats, intuitively DTW is quite simple. It attempts to

match two time series by “stretching” and “contracting”

subsequences of the series so the “height” difference be-

tween the series is minimized. This idea is depicted in

Figure 1. The figure shows both the original time series and

an exaggerated separation of them to highlight the matching.

Each line connecting the series is a matching between two



Figure 1. Dynamic Time Warp: two time series of approximately equal
mean value (top) are exaggeratedly separated and the warping calculated
by DTW is displayed (bottom)

observations. The DTW dissimilarity between the series is

the square root of the sum of the differences between the

actual matched observations.

The original DTW algorithm was parameter-free and was

allowed to “stretch” the patterns as much as required. A

more constrained version of the DTW incorporates the

window size parameter δ. The δ parameter limits the number

of observations a matching can occur ahead or behind any

given observation. Oftentimes, this leads to improvement

of the classification accuracy, since the constraint avoids

pathological warpings [11]. We have run DTW both without

the δ parameter and with certain selected values (how we

chose these values will be discussed in the next section). We

have identified these executions as “DTW Full window” and

“DTW Best window”.

A previous work [9] has noted that complex time series

are frequently considered more similar to simple time se-

ries than to their actual nearest neighbors. The Euclidean

distance and even the DTW dissimilarity may report false

neighbors when used for k-NN classification if the com-

plexity of the classes varies too much within a data set.

For instance, a higher complexity class may have its objects

frequently misclassified as a simpler class. In [9], a Com-

plexity Invariant Distance (CID) approach is proposed. CID

is a factor of difference of complexity between two time

series. It is calculated as the estimated complexity of the

more complex series divided by the estimated complexity

of the less complex series. When two time series are similar

in complexity (i.e., both are very complex or both are not

very complex), the CID factor tends to 1. When the two time

series are not similar in complexity however (i.e., one is very

complex and one is not very complex), the CID factors tend

to a number higher than 1. By multiplying the CID factor

to the calculated dissimilarity, one may “punish” matchings

between series that differ largely in complexity.

The complexity of a time series may be estimated by

different means [12]. In our experiments, we have used the

simple approach proposed in [9]. This approach is based on

the concept that if a time series is “stretched” to the point

where it is “flat”, “complex” time series of equal length as

“simple” time series will turn out longer, as illustrated in

Figure 2.
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Figure 2. Estimation of the complexity of three time series. The least
complex of them (T1) “stretches” to the shortest line segment. The most
complex of them (T3) “stretches” to the longest line segment. Originally
featured in [9]

For the remainder of this paper, let a time series of length

m be an ordered sequence Z = (Z1, . . . , Zm), Zi ∈ R

for all i ∈ [1,m]. Given a time series Z, its complexity

as previously explained may be numerically expressed as in

Equation 1.

CE(Z) =

√

√

√

√

m−1
∑

i=1

(Zi − Zi+1)2 (1)

The Minkowski distance function is a generalization of

the Euclidean distance function. It may be used to describe

a family of distance functions differing one from another

only by the value of the parameter p, which is described in

Equation 2. When p = 2 it describes the Euclidean distance,

which expresses our commonsense notion of “distance”

measured as the length of a straight line between two points.

When p = 1 we have the Manhattan distance function. This

distance function is also called “city block distance” because

it brings the notion of distance one would intuitively think

of when walking in a city. Other values of p are much less

intuitive but nevertheless perfectly plausible. The Chebyshev

distance function may be considered an extreme case where

p→∞ and is expressed by Equation 3.

dMink(S,Z) = p

√

√

√

√

m
∑

i=1

|Si − Zi|p (2)

dCheb(S,Z) =
m

max
i=1
|Si − Zi| (3)

One may also think of averaging distance functions. For

instance, the average of the Manhattan distance with the

Chebyshev distance yields surprisingly good results. We

have identified this distance function as “Average L1/L∞”.



Among dissimilarity functions unrelated to the Minkowski

family, we have selected the Lorentzian (Equation 4), Jac-

card (Equation 5), and Dice (Equation 6) dissimilarities.

dLor(S,Z) =

m
∑

i=1

ln(1 + |Si − Zi|) (4)

dJac(S,Z) =

m
∑

i=1

(Si − Zi)
2

m
∑

i=1

(S2
i + Z2

i − SiZi)

(5)

dDic(S,Z) =

m
∑

i=1

(Si − Zi)
2

m
∑

i=1

S2
i +

m
∑

i=1

Z2
i

(6)

Several other dissimilarity measures were employed in our

experiments. Though these measures are not individually

discussed in this section, they are nonetheless listed in

Table I. For reference on their formulas and discussion on

some of their properties, please refer to [7].

IV. EXPERIMENTS

In order to verify how the dissimilarity measures contrast

to each other, we have conducted an extensive set of experi-

ments on 42 data sets from the UCR Time Series Classifica-

tion/Clustering Page repository [10]. The UCR repository is

a comprehensive repository of time series including real and

synthetic data sets. Currently, it is arguably the largest public

repository of labeled time series data sets [1], encompassing

data sets from a variety of domains.

The UCR repository data sets are shipped with a preset

two-fold partition of training and testing data sets. Most

data sets may be considered small or medium-sized, but

none of them is partitioned with less testing instances than

training instances. It is common that the proposed partition

is respected by paper authors to encourage experiment

reproducibility and comparison of results.

The experimental method we have followed to assess

each measure consists of multiple executions of the 1-NN

classification algorithm over the several data sets. The 1-NN

classifier is a simple instance-based classifier that depends

heavily on the similarity or dissimilarity measure employed

and is also understood to be extremely competitive with

more robust, complex classification models. Specifically, Xi

et al. [13] claim that, when associated with DTW, the 1-NN

classifier is “exceptionally difficult to beat”. Such reasons

make a good case for using the 1-NN to evaluate the efficacy

of dissimilarity/similarity measures in classification tasks.

For sake of clarity, we have included in Figure 3 the

1-NN algorithm used in this paper to classify and estimate

accuracy. We have repeated this process for every data set

Input: Training data set S, testing data set T , (dis)similarity

measure M
Output: Estimated accuracy Acc

1: Matches← 0
2: for each Zt ∈ T do

3: find Zs ∈ S that minimizes/maximizes M(Zt, Zs)
4: if the class labels of Zs and Zt are the same then

5: Matches←Matches+ 1
6: end if

7: end for

8: Acc← Matches
|T |

9: return Acc

Figure 3. Accuracy estimation for a given measure M

and measured the estimated accuracies, and used this statistic

as an assessment of the distance measure.

Two of the dissimilarity measures from our study rely

on parameters: DTW “Best window” algorithm has the δ
parameter and the Minkowski distance function has the p
parameter. There are possibly optimal values of δ and p
for each data set, but it is not obvious what these values

are. We have used the algorithm presented in Figure 3 as

an underlying base for the algorithm presented in Figure 4

to tune the p parameter for each data. Since we could not

possibly test every single possible value of p, we first defined

a set of sensible values for consideration. Then, when testing

against a data set, we ran multiple executions of the 1-NN

Input: Training data set S, (dis)similarity measure M , set

of parameter values P
Output: The selected value for the parameter

1: BestV alue← ∅

2: BestAcc← 0
3: for each p ∈ P do

4: SumOfAccs← 0
5: for each instance s ∈ S do

6: St ← {s}
7: Ss ← S \ St

8: Acc ← the estimated accuracy of 1-NN with

(dis)similarity measure M over the training data

set Ss and the testing data set St

9: SumOfAccs← SumOfAccs+Acc
10: end for

11: MeanAcc← SumOfAccs
|S|

12: if MeanAcc > BestAcc then

13: MeanAcc← BestAcc
14: BestV alue← p
15: end if

16: end for

17: return BestV alues

Figure 4. Parameter values estimation for distance measure d





“power” of the statistical test depends both on the number

of algorithms and data sets. The larger the number of

algorithms, the larger the number of required data sets.

We included in the test the measures that were found to

be significantly better than the Euclidean distance, except

for DTW “Full window”. We have executed a Friedman

hypothesis test with p = 0.05 considering 8 measures

over 42 data sets. After the Friedman test rejected the null

hypothesis that all measures were equally comparable, we

proceeded with a post-hoc Nemenyi test. The result of the

Nemenyi test is presented as a critical distance graphic in

Figure 7. The scale in the figure indicates the average rank

of each measure. Sets of measures connected by a thick line

have not presented statistically significant difference.

CD

1 2 3 4 5 6 7 8

CIDDTW “Best Window”

DTW “Best Window”

CID Euclidean
Minkowski Lp

Euclidean

Lorentzian

Average L1/L∞

Manhattan

Figure 7. Nemenyi test result. Measures connected by a thick line have
not presented statistically significant difference

It is interesting to note that the Nemenyi test did not

accuse significant difference between CID and DTW (both

with best window). The reader might find such a result

contradicts the result of the Wilcoxon test. Actually not.

Since the Nemenyi performs multiple comparisons, it re-

quires more evidence in order to detect significant difference.

It is worth recalling that the result of the Nemenyi test

is not stating that there is no difference between CID and

CIDDTW. Rather it is simply saying that there is not enough

evidence to affirm that there is a statistically significant

difference under the multiple comparison setting.

The Nemenyi test indicates that CIDDTW and DTW

significantly outperform all other measures but CID. It seems

that our experiments have a “take home” message that DTW-

based measures should be preferred over the other measures

for most applications. However, there is a caveat here. DTW-

based measures are the only O(m2) measures in our exper-

iments, where m is the length of the time series. The reader

might be asking him/herself how these complexities will

translate in terms of running time, and this question is not

so easy to answer. The literature has several improvements

proposed to speed up DTW calculations [15], [16], [1], and

our implementation does not incorporate all these proposals.

Nevertheless, despite our best effort to improve the speed

of DTW-based measures, experiments with these measures

took several times longer than all experiments with other

measures combined.

VI. CONCLUSION

This paper empirically compares 48 dissimilarity mea-

sures in 42 time series data sets. Our objective is to call the

attention of the research community about other dissimilarity

measures besides ED and DTW, some of them able to sig-

nificantly outperform these measures in classification. Our

results show that CIDDTW significantly outperforms DTW

and that CIDDTW, DTW, CID, Minkowski Lp, Lorentzian

L∞, Manhattan L1, Average L1/L∞, Dice, and Jaccard out-

perform ED, but only CIDDTW, DTW, and CID outperform

ED with statistical significance.

Given that DTW-based measures are the only O(m2) time

complexity measures in our experiments, it is not surprising

that its execution time has been superior to that of all

other measures by several times. We defend that measures

such as the relatively new CID Euclidean [9] and even the

Minkowski Lp (which requires parameter tuning) deserve

more attention from the data mining community.

As future work we intend to investigate the error corre-

lation among these measures, so we can suggest possible

measure compositions that will further improve the classifi-

cation accuracy of the k-NN classifier.
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