
An Aristotelian Understanding of
Object-Oriented Programming

Derek Rayside
Electrical & Computer Engineering

University of Waterloo
Waterloo, Canada

drayside@acm.org

Gerard T. Campbell
Department of Philosophy

St Jerome’s University
Waterloo, Canada

gcampbel@watarts.uwaterloo.ca

ABSTRACT
The folklore of the object-oriented programming community
at times maintains that object-oriented programming has
drawn inspiration from philosophy, specifically that of Aris-
totle. We investigate this relation, first of all, in the hope
of attaining a better understanding of object-oriented pro-
gramming and, secondly, to explain aspects of Aristotelian
logic to the computer science research community (since it
differs from first order predicate calculus in a number of im-
portant ways). In both respects we endeavour to contribute
to the theory of objects, albeit in a more philosophical than
mathematical fashion.

1. INTRODUCTION
Both the programmer and the logician wish to reason with
order, with ease, and without error [2] for the sake of achiev-
ing conceptual integrity [11] in their intellectual expressions.
The importance of rigorous formalism to conceptual integrity
is well understood in programming and in logic. However,
other facets of conceptual integrity, such as the use of lan-
guage, seem to be less well understood. Our enquiry explores
some of these other facets of conceptual integrity in pro-
gramming by comparing object-oriented programming with
Aristotelian logic — a logic that is concerned both with
formalism and with meaning. By this we hope to make con-
tributions to the theory of object-orientation and thereby
facilitate better programming and better programming lan-
guages.

Our enquiry follows the order often suggested for those pro-
gramming in an object-oriented programming language: first
to identify the objects and classes, then to examine the rela-
tions between them, and finally to reason about them. This
is also the order of study in Aristotelian logic, which, ac-
cording to Thomas Aquinas, consists of three operations:
definition, predication, and inference [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’00 Minneapolis, Minnesota USA
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

The complementary roles that meaning and formalism play
in conceptual integrity can be illustrated with what we call
the ‘transference deduction’:

The Transference Deduction: What is said
(A) of one thing (B) may also be said of another
(C) by virtue of the relation between them (BC).

AB BC
AC

Four examples of the transference deduction that are rele-
vant to object-oriented programming are:

1.
Every animal is mortal.
Man is an animal.
∴ Man is mortal.

2.
Man is mortal.
Socrates is a man.
∴ Socrates is mortal.

3.
Homo erectus stands upright.
Homo sapiens evolved from homo erectus.
∴ Homo sapiens stands upright.

4.
Key A opens this door.
Key B is a copy of Key A.
∴ Key B opens this door.

At this point it would appear that all four examples are
formally valid according to our model of the transference
deduction. Where they differ is in the meanings of the words
employed, the relations between the things, and therefore
the certainty of the conclusions (AC in the model). With
respect to the certainty of the conclusion, we can see that
this is determined by the relation of the middle term (B)
to each of the other terms. For this reason, we may say
that the middle term is the ‘cause’ of the conclusion: it is
the reason why we bring the other two terms together (A
and C). The middle terms of the example deductions are
‘animal’, ‘man’, ‘homo erectus’, and ‘Key A’, respectively. In
the last example, the duplicate key will open the door only
if it is well made, and so the conclusion seems less certain
than in the first example.

According to Brachman, ‘understanding what is on either
end of the link is also the key to understanding the import
of the link’ [9]. This is where Aristotelian logic has some-
thing to offer to conceptual integrity over and above rigorous
formalism.

1.1 Overview of Aristotelian Logic
Aristotle’s logical works are commonly referred to as the
Organon (Greek, for tool — and reason is the tool of tools).
The Organon is divided by Thomas Aquinas according to
the three operations1 of our reason in its activity of coming
to know about things [2]. The first two of these rational
operations are concerned with reason as the faculty of un-
derstanding. It is the third operation which treats reason
as a the faculty of discoursing whereby we go from what is
understood already to the formation of a new truth derived
from established premises.

1. Definition The first operation is the subject of Aristo-
tle’s treatise on the Categories [3], and is referred to as sim-
plex apprehensio by Thomas Aquinas [2]. ‘Apprehension’
refers first to ‘reaching out and grasping onto’, for example
the branch of a tree or a criminal. Here it refers to how rea-
son reaches out and grasps the rational structure in things.
This notion of ‘apprehension’ is also found in the phrase real
world apprehension as used in the Beta conceptual frame-
work [23, p.2]. So, the first operation begins with grasping
the unity in things, which we express in words, and cul-
minates in the art of definition. Once we have grasped the
definitum (the thing to be defined) in a unified way, we must
see what differentiates it from other similar things. These
distinctions can be either essential or accidental. If they are
essential then they tell us what kind of thing the definitum
is. If they are accidental then they tell us something about
the definitum other than what it is. In differentiating the
definitum from other similar things we will have to divide.

2. Predication The second operation of reason, the sub-
ject of Aristotle’s treatise On Interpretation [3], is referred
to as compositio et divisio by Thomas Aquinas [2]. Still or-
dered to understanding, the second operation creates state-
ments in which a predicate is either affirmed or denied of a
subject (i.e. composed with or divided from). The predicate
may be said of the whole nature of the subject, or of only of
some individuals in which that nature is found. A statement
must be either true or false — it is not the subject and the
predicate which are true or false on their own, it is in the
composition or division of them that truth and falsity arises.

3. Inference All of Aristotle’s other logical works [28]
address the third operation of reason, which reason is most
perfectly named. Notice that the first operation of reason
(apprehension of natures) is ordered to the second opera-
tion (telling us what belongs or does not belong to those
natures), and that the second operation is ordered to the
third operation (where reason attains its goal of knowing
about things).

This final operation of reason is concerned with the valid
ordering of our statements for the sake of a conclusion. Va-

1We use the word ‘operation’ because it is etymologically
linked to ‘opus’, and so implies that the activity is carried
out for the sake of a specific work (i.e. an argument).

lidity and invalidity are properties of an argument as a whole,
whereas truth and falsity are properties of individual state-
ments. Of course, since the conclusion of an argument is
also a statement, it too is either true or false. In the third
operation Aristotelian logic focuses on deductive argument
in the form of the syllogism.

2. THE FIRST ACT: DEFINITION
In order to define a thing we must grasp it first in a uni-
fied way, as a one kind of thing. To do this we will need
a principle of unity. There are two such principles of unity
that we need to distinguish here: the unity of matter which
makes the individual thing to be this one, and the unity of
form which makes it to be the kind of thing that it is. We
will refer to things that are one according the first princi-
ple as singulars or individuals, such as ‘Socrates’. We will
refer to things that are one according the second principle
as universals, such as ‘man’. We can immediately see that
there is some similarity to the notions of ‘object’ and ‘class’
in object-oriented programming.

Aristotle refers the singular as primary substance, and the
universal as secondary substance [Categories §5]. This is the
historical root of the distinction between ‘first order’ and
‘second order’ logic; Aristotelian logic may be considered
(loosely) as a ‘second order’ logic because it is considers only
the universal as the proper subject of logic. The reason for
this approach is that the singular is the proper object of the
senses — individuals are differentiated by their matter which
is grasped by the senses rather than by reason. This raises
an important point: in recent centuries much of the work in
logic has been done by mathematicians who work primar-
ily with immaterial singulars (such as numbers). Aristotle
starts his enquiries with material singulars — things in the
real world, as does object-oriented programming (at least ac-
cording to some). Because this is an investigation of logic we
must focus on the universal, even though conclusions must
still be verified in the real world from which logic originates.

Grammatically Singular and Logically Universal One
of our central examples will be the statement man is an an-
imal. This example illustrates some important issues that
cannot be illustrated with more common computer science
examples such as coloured point is a point. It is also impor-
tant to note that we render our example with grammatically
singular and logically universal terms: this is intentional and
central to the paper. If we used grammatically plural terms
we would obscure the unity of the universal — it is impor-
tant to realize that the universal represents a oneness of
nature, or unity of form which is grasped by reason, rather
than simply a collection.

2.1 Signs, Words and Concepts
What we are trying to define must not only be a univer-
sal, said of many, but it must designate the same nature in
each of the things of which it is said. The logic of the first
operation of reason is concerned with things as represented
in reason by concepts that are then expressed in words [On
Interpretation §1]. It is through the ordering of our words
(and the concepts represented by the words), that we come
to know the world.

As everyone acquainted with a second language realizes, the

choice of a word to signify a given nature is arbitrary. For
the logician, however, whatever the language, is important
to maintain the same meaning when we define. But language
is an instrument for communicating, so if we wish to commu-
nicate, the arbitrary sign must signify also in a conventional
way — that is, the sign selected has to be ‘agreed upon by
all’. Even if one of the singular pleasures of using words is
that we can play with their different conventional meanings
(why we enjoy the double entendre), it is important for the
programmer and the logician that a word not change its sig-
nification within a given context. For this reason, Aristotle
begins his treatise on the Categories by pointing out differ-
ent ways in which words can be used to signify concepts:
univocally, equivocally, and analogically.2

We begin by paying attention to the fact that it is not words
that are univocal, equivocal or analogical, it is our use of
words that is univocal, equivocal or analogical in meaning.
Some people find symbolic logic attractive because variable
names such as x have no inherent signification, thus making
it easier to use them in a univocal fashion. However, once
we give meaningful names to our variables we must respect
those names and what they ‘stand for’.

How words can be used to signify concepts is relevant to the
programmer in three ways: first, in terms of the language he
uses to speak about programming; secondly, in terms of the
words he uses to name things in his programs; and thirdly, in
terms of the impact his naming of things has upon compilers
(and other program analysis tools).

Univocal We use a word univocally when, within a given
context, we maintain the same signification. For example,
we can use the word ‘bat’ to signify ‘an instrument for strik-
ing a ball’. Here the word can be said of a wooden bat or an
aluminum bat, of a baseball bat or a cricket bat. We must
use words in a univocal fashion if we wish to define well.

Equivocal We use a word equivocally when, within a given
context, we use it to signify different and unrelated natures,
or even deliberately play with more than one meaning. For
example, we can use the word ‘bat’ to signify both ‘an in-
strument for striking a ball’ and ‘a small flying mammal’
(a characteristic transferred to the umpire by the fan who
yells that the umpire is ‘as blind as a bat’). The metaphor-
ical use of a word is always equivocal because the nature
signified does not belong essentially to the subject, and con-
sequently two different natures are signified simultaneously
(this is why it is an equivocation).

For example, if we call a data structure a ‘tree’ we do so
metaphorically: a data structure is a mathematical abstrac-
tion; a tree is a living plant. While the data structure and
the plant share an accidental resemblance of form, they are
not of the same substance (and, for Aristotle, substance
is very closely related to essence). We can express this
metaphorical usage of ‘tree’, and any other metaphor, in
the form of the transference deduction:

2In [Categories §1] Aristotle speaks of things being named
equivocally and univocally. The notion of analogical signi-
fication (which has elements of both) is developed by the
mediæval commentators.

A bifurcating plant is called ‘tree’.
A bifurcating data structure is like a bifurcating plant.
∴ A bifurcating data structure is called ‘tree’.

and, by extension:

A tree has leaves.
A bifurcating data structure is called ‘tree’.
∴ A bifurcating data structure has ‘leaves’.

The English term ‘metaphor’ is from the Greek metapherein,
which means ‘to transfer’. It is from this meaning that we
have named the transference deduction: both metaphor and
the transference deduction involve transference, and both
need only an accidental similarity as the basis of the trans-
ference.

In the context of software, ‘writing’, ‘engineering’, and ‘grow-
ing’ have all been examined by the computer science commu-
nity as metaphors for the development of software (e.g. [10,
12]). The metaphorical use of the term ‘inheritance’ has
also received a fair amount of discussion in the context of
object-oriented programming, and we will treat this partic-
ular metaphor later.

The use of metaphor is also quite common in programming
itself: we name our classes, variables, etc. most often in
a metaphorical fashion. Some programming methodologies,
such as XP [8], explicitly encourage this, since metaphor
helps us to understand the less familiar in terms of what
is more familiar.3 There are times when the metaphorical
usage of words does not seem to cause too much confusion:
for example, nobody expects to find sap in a data structure.
There is a large body of literature on metaphor itself (it
is the subject of several journals), but we are not aware of
any work that investigates the use of metaphors within pro-
grams and the impact of this on program comprehension —
what constitutes good use of metaphor in the development
of software?

Finally, a common example of plain equivocation in pro-
gramming is found in the discussions of structural subtyping:
a Cowboy and a Shape class that both define draw methods.
The activity signified by draw is different in each case, and
the danger of this particular equivocation is well understood.

Analogical Our usage is analogical when, within a given
context, we use one word to signify concepts that, although
they are different in some respects, are ‘essentially’ and not
just ‘accidentally’ alike. Within the context of baseball,
one’s turn ‘at bat’ refers to ‘the activity of striking the ball’,
and it is from this activity that ‘bat’ as ‘an instrument for
striking the ball’ is named (i.e. the verb and the noun are
related essentially). Another example of analogical usage is
the Greek word logos, from which the word English word
logic is derived. The first meaning of logos is word; sec-
ondly, it signifies the concept (or idea) which the word rep-

3This is why Plato refers to poets as the ‘fathers and au-
thors of wisdom’. However, in comparison to a proper scien-
tific understanding, he refers to them as ‘liars twice removed
from the truth’. (Which has to be understood in terms of
Plato’s metaphysical doctrine of Ideal Forms: art imitates
nature, which in turn imitates Ideal Form).

resents; thirdly, it signifies the intelligible nature of things
represented in the concept; and finally, Logos refers to that
Reason whose works are expressed in the intelligible natures
of things (this is the Logos of John 1:1). The purpose of logic
is to order our words and our concepts so that we can come
to know the natures of things.

Within object-oriented programming, we may consider that
‘method overloading’ and ‘method overriding’ are intended
as analogical usage: it is generally considered poor program-
ming practice to give the same name to methods that are
not related. This intention is part of what is captured in the
notion of ‘subclass responsibility’. Programming languages
such as Beta encourage this more explicitly by use of the
inner construct instead of arbitrary method overriding.

2.2 Predicable Relations
Good definition is the foundation for clear thinking since
it tells us not only the kind of thing something is, but also
how it is so in a distinct way. In defining, whatever we say
of the definitum is said either essentially or non-essentially
(accidentally). If it is said essentially, it tells us what the
subject is. If it is said non-essentially (accidentally), it tells
us something about the subject other than what the subject
is. To state that ‘man is an animal’ says something essen-
tial. To state that ‘Socrates has a snub-nose’ says something
accidental. These ways of characterizing a subject, either es-
sentially or accidentally, are known as predicable relations.4

2.2.1 Essential Relations: Genus and Species
In modern times the terms genus and species are most com-
monly used as biological terms, in part due to the eighteenth
century Swedish biologist Carolus Linnaeus. However, these
terms have a much older history in logic. Those essential
predicable relations in the line of telling us what something
is are ‘genus’ and ‘species’.

The predicable relation of species is that whereby something
one (universal) is said of many, telling us the nature of the
many, which differ only as individuals — i.e., individuals
which differ according to their matter since matter is the
principle of individuation. When ‘man’ is said of ‘Peter’,
‘Paul’, and ‘Mary’, it tells us what kind of thing each of
them is. In summary, then, ‘species’ tells us what kind of
thing an individual is.

The predicable relation of genus is that whereby something
one is said of many which differ according to kind or species.
In terms of abstraction, genus is more universal than is
species (which is also a universal), and it tells us what kind
of thing a species is. For example, ‘animal’ (genus) tells us
what kind of thing ‘man’ (species) is — and we should notice
that this relation always admits of being expressed as ‘man
is a kind of (species of) animal’. Similarly, if we say that

4The teaching on predicable relations originates in the Is-
agoge, written in the third century AD by Porphery the
Phoenician. Porphery gives a third essential relation which
he calls specific difference. For Porphery’s criteria of ‘spe-
cific difference’, philosophers have found only two instances:
‘rational’ said of ‘man’, and ‘sentient’ said of ‘animal’. A
more common and more useful notion of specific difference
is ‘that which is added to a genus to distinguish sufficiently
the definable species (the definitum) within that genus’.

‘animal is a kind of living substance’, we see that once more
there is a relation of genus (living substance) to species (an-
imal). So ‘animal’, for example, can be both a genus (when
predicated of ‘man’) and a species (when ‘living substance’
is predicated of it).

Every definitum must be seen as a species, and the first
element in every good logical definition will be its proximate
genus, telling us in an essential way what kind of thing the
definitum is. However, the genus needed to define well is
the proximate (closest) genus. ‘Animal’ tells us immediately
what kind of thing ‘man’ is. ‘Living thing’ is too generic in
trying to tell us what ‘man’ is. As we approach definition,
then, we take note of the following:

1. Individuals can never be logically defined, nor are they
the subject of logic because their differences are only
material rather than a difference of kind.

2. Any kind of thing for which there is no higher genus
can never be defined logically, nor can it be a subject
of logic, because every definitum requires a genus.

3. The definitum must be a species.

4. Finally, because the genus is more universal than the
species, then every definition will require a specifying
difference to distinguish in an adequate way the defini-
tum from everything else contained within the genus.
In a way, the specifying difference reduces the genus
to the same universality as the species.

2.2.2 On the Notion of Species
Since idea of the predicable relation of genus to species is
so critical both to defining and to object-oriented program-
ming, we will examine it in further detail. Brachman says
of its importance:

This type of is-a relation that carries structure
between structured descriptions is one of the most
radical departures from representation schemes
based on standard predicate logic. Almost all of
the other is-a relations are easily expressed in
standard quantificational languages. [9]

This type of is-a relation is at the core of Aristotelian logic,
and here we wish to investigate how the object-oriented
programming notion of ‘class’ is similar to the notion of
‘species’. Now, to say ‘the notion of species’, without quali-
fication of context, could easily lead us to an equivocation,
for there are some very different notions of species (just as
there are different notions of ‘class’). We will examine the
notion of species held by Plato, by Aristotle, and by Dar-
win. All of these are all superficially similar to the object-
oriented programming notion of class (and to each other), to
the extent that each has a designation, an intension and an
extension (terminology fairly common in computer science
and used in [23]). Plato’s notion of species is mostly meta-
physical (Ideal Form); Aristotle’s is logical, biological, and
metaphysical (universal); and Darwin’s is primarily biologi-
cal. We will examine the difference in the notions of species
according to three criteria: the primary relations associated

with the notion of species; the metaphysical importance of
the notion of species to that thinker; and the criteria of what
constitutes a species. Programming, of course, is a practical
activity and so classes do not have any metaphysical impor-
tance. However, this criteria is important to understanding
these different notions of species, and may provide some in-
sight into object-oriented programming.

For some time the object-oriented programming research
community has made a distinction between sub-classing (code
sharing), subtyping (interface sharing), and is-a (a concep-
tual relation) (e.g. [20, 32]). This is an important distinc-
tion, but it does not transfer well to these three notions of
species. Furthermore, these three ideas tend to overlap in
most common class-based programming languages. Conse-
quently, for lack of better terms, we will use the terms ‘sub-
class’ and ‘super-class’ in this discussion, but this should not
be read as ‘sub-classing = implementation inheritance’.

At the outset, it is worth noting that the notion of ‘class’ in
computer science is acknowledged to be different than the
notion of ‘set’. The latter is strictly extensional, whereas the
former is both extensional and intensional (e.g. [24]). A set’s
identity is determined solely by its membership (extension),
whereas a class’s identity is determined (at least in part) by
its intension. In the writings of Bertrand Russell and, con-
sequently, much of mathematics and logic in the twentieth
century, the word ‘class’ is taken to mean ‘set’, in contrast
to the interpretation used in object-oriented programming.
Rose notes that Russell’s notion of ‘class’ as ‘set’ is not be
read into either Plato or Aristotle [27, p.6].

Plato Plato’s notion of species is translated in English as
Ideal Form. This notion of species is similar to Aristotle’s:
the difference is primarily metaphysical. In coming to their
respective notion of species, both Plato and Aristotle were
motivated to solve one of the central problems in Greek phi-
losophy: how to reconcile the intelligibility of the real world
with the fact that material beings are constantly changing.5

Plato attempts to solve the problem by saying that changing
individuals are material imitations of the Ideal Forms, which
are eternal and unchanging (i.e. have neither a beginning
nor an end in time). The primary relation associated with
Plato’s notion of Ideal Form is that of material singulars
which are said to ‘participate in’ or ‘imitate’ the Ideal Form.
The notion of ‘class’ in object-oriented programming is Pla-
tonic to the extent that classes pre-exist objects in terms of
program execution (as the Forms pre-exist material singu-
lars), and that classes are used ‘as a template for generating
objects’. We may not say that prototype-based languages
are Platonic, however, they deal only with material singulars
(objects): to say that one singular is an imitation of another
is entirely different than a material being participating in an
Ideal Form.

Aristotle Aristotle, like his teacher Plato, insists that truth
is eternal and unchanging, and this is also captured in his

5Paramenides and Heraclitus take radically opposing posi-
tions on this problem. Paramenides says that all change is
an illusion, and Heraclitus says that change alone is real.
Aquinas refers to such extremes as beautiful errors because
their juxtaposition permits us to understand the true nature
of the problem.

notion of the universal. However, Aristotle views material
beings as what is ‘really real’, and the universal as an ab-
straction which exists only in the mind. This is why Aristo-
tle refers to singulars as primary substance and the universal
as secondary substance; it is also the reason why the Aris-
totelian position is sometimes referred to as ‘metaphysical
realism’. Aristotle offers a more reasoned solution to the
problem of reconciling the intelligibility of the real world
with the constant flux of material beings by showing that
the material world is logically intelligible in terms of the
natures of things (which are expressed in the universal).

Since both species and genera are eternal and unchanging,
there is no temporal ordering between them, nor is one de-
pendent on the other. The species, however, is always first
in the order of coming-to-know (after singulars, of course).

We may say that classes in object-oriented programming are
Aristotelian insofar as the programmer first comes to know
individuals (objects) in the problem domain and then de-
velops abstractions (classes) that contain them. We may
say also that the notion of class in object-oriented program-
ming is Aristotelian to the extent that classes seem to have
a secondary ontological status to objects.

It is important to keep in mind that a class developed by
a programmer for the sake of solving a practical problem is
not intended to be some representation of eternal unchang-
ing truth, even if the programmer usually hopes that the
class will transcend time and changes in the problem do-
main. Moreover, the act of programming does not force
the programmer to take a metaphysical position on the true
nature of reality.

There are two primary relations associated with Aristotle’s
notion of species: the relation of species to genus, and the
relation of individual to species. Both of these relations are
relations of logical abstraction: the species represents the
intelligible form of the singulars contained under it, and the
genus represents the more abstract intelligible form of the
species contained under it. The term instantiation may be
used to describe both the relation of individual to species
and the relation of species to genus, although it refers more
properly to the first rather than the second. In this sense
the Aristotelian notion of genus corresponds to some notions
of meta-class, such as that present in Telos [25].

The contemporary use of the prefix meta originates only in-
directly with Aristotle. The original Greek meaning of meta
is ‘after’. We now use meta, in the sense of metaphysics or
metadata, to mean ‘of a higher order’. This usage of the
term is derived from Aristotle’s book on the Metaphysics.
Aristotle never used the term metaphysics, but instead re-
ferred to the subject of that work as ‘first philosophy’ or
‘theology’. The term metaphysics originates from Androni-
cus of Rhodes (first century BC), Aristotle’s first editor, who
placed the book on the Metaphysics after the book on the
Physics in his compilation. If we look at the distinction be-
tween Aristotle’s Physics and Metaphysics we find that both
treat of the same subject matter, but in different respects:
the former is concerned with proper causes and the latter
with ultimate causes (or first principles). For our current
considerations, an analogous relation would be to say that

‘man is a species’, where ‘man’ indicates a class and ‘species’
indicates a ‘meta-class’. Aristotle’s notion of genus should
not be looked at in this contemporary meaning of ‘meta’: an
Aristotelian genus is much closer to the idea of an abstract
super-class, since it cannot have direct singular instances.

Darwin Darwin, primarily a biologist, restricted his no-
tion of species to living things, whereas Plato and Aristotle
use the term in a much broader way. Darwin was not a
metaphysician, but his notion of biological species has of
course caused much controversy over what may be called
metaphysical issues. As is commonly known, the primary
relation associated with Darwin’s notion of biological species
is evolution.6

The ‘inheritance’ mechanism in object-oriented program-
ming has been likened to this Darwinian notion of evolution
(e.g. [34]). As we will see below, considering super-class ac-
cording to Darwin’s biological relation leads to a much dif-
ferent notion than if it is considered according to Aristotle’s
logical relation.

The primary tenet of Darwin’s hypothesis is that it is pos-
sible for one species to evolve into another species or, more
properly speaking, that the individuals of one species evolve
into the individuals of another species. For example, one
may say that homo sapiens evolved from homo erectus, which
in turn evolved from homo habilis, and so on. Such a relation
has some interesting properties:

• Members of both the old and new species can exist
simultaneously.

• Usually the old species becomes extinct.

• The features of the new species are not a strict super-
set of the features of the old species: some features
may no longer be required due to changes in the envi-
ronment (e.g. ice-ages).

• Sometimes the new species is more complex than the
old species. Sometimes the new species is merely an
adaptation to environmental conditions, and not nec-
essarily more complex.

• The relation is always between two species rather than
between a species and a genus. To say that ‘homo sapi-
ens is in the genus homo’ would use the Aristotelian
relation of logical abstraction. Consequently, the old
species is not more abstract than the new species: both
are equally abstract/concrete.

• It is possible for a species to evolve into a different
species in a different genus. That is, a species in
a genus other than homo could evolve into a species
within the genus homo. Note again that ‘genus’ is a
logical abstraction (and an Aristotelian notion).

One obvious and important metaphysical difference between
the Platonic/Aristotelian notion of species and that of Dar-
win is that the former represents eternal unchanging truth,
6The word evolution is much older than Darwin, and its
first meaning is of the growth and development within an
individual.

whereas the latter does not. The implication of this is that
Darwinian species are only accidentally different from one
another (in the Aristotelian sense of accidental and essen-
tial).

The object-oriented programming relation between a sub-
class and a super-class has been compared to the Darwinian
relation of evolution, with the conclusion that the two are
similar [34]. This comparison took the position that a sub-
class is an incremental modification of a super-class. If this
is indeed the intended relation between a sub-class and a
super-class, then there is a strong similarity between the
two relations. However, one must be careful to distinguish
between what a class represents and how a class is repre-
sented: that is, between the concept signified by the name
of the class and the text fragment that represents the class
to the compiler. Certainly the text fragment that represents
a sub-class may be considered as an incremental modifica-
tion of the text fragment that represents the super-class.
However, it is another thing entirely to think that the con-
cept the sub-class represents is an incremental modification
of the concept that the super-class represents.

Darwin’s relation of evolution is most similar to the relation
between ‘parent’ and ‘child’ objects in prototype based pro-
gramming languages: here the relation occurs between indi-
viduals, which is where Darwin’s relation properly occurs as
well, and there is a stronger sense of transfer between them.

Abstraction and Evolution There are many terms used
to describe the relation of sub-class to super-class in object-
oriented programming. In Table 1 we evaluate some of these
terms against the Aristotelian relation of logical abstraction
between species and genus, and the Darwinian relation of
biological evolution between two species. A check (

√
) in-

dicates that the description is appropriate for the relation,
while an x (×) indicates that it is not. The table contains
more terms that we have space to discuss in the text: only
the most important and interesting terms are given further
discussion.

Abstraction Evolution
logical biological

species / genus two species
Description Aristotelian Darwinian

is-a
√ ×

kind-of
√ ×

specific / general
√ ×

Liskov substitutability
√ ×

variability / commonality
√ ×

abstraction
√ ×

specialization
√ √

incremental modification × √
adaptation × √
mutation × √
extends × √
derived / base × √
complex / simple × √
new / old × √
evolution × √

Table 1: Comparison of abstraction and evolution.

The phrase ‘is-a’ is applicable to the Aristotelian relation,
but not to the Darwinian one: we would not say that ‘homo
sapiens is a homo erectus’. However, the word ‘is’ (the verb
‘to be’) is known to be problematic in both philosophy and
computer science (e.g. [9]). The phrase ‘incremental modifi-
cation’ is only applicable to the Darwinian relation: we may
say ‘homo sapiens is an incremental modification of homo
erectus’, but we may not say that ‘man is an incremental
modification of animal’ (and here it is extremely important
to understand that animal is an abstract idea, i.e. a genus).

The Liskov principle of substitutability, that an instance
of a sub-class may be used wherever an instance of the
super-class is expected, requires that we be able to conclude
the transference deduction with certainty. This requirement
only holds for the Aristotelian logical relation of abstraction
— it does not hold for the Darwinian relation of evolution.
For example, there are things that can be said of homo erec-
tus that cannot be said of homo sapiens, whereas there is
nothing that can be said of animal essentially that cannot
also be said of man or of any other kind of animal.

The term ‘specialization’ is unique in Table 1 because it is
the only term that appears to be suitable for both the Aris-
totelian logical relation of abstraction and the Darwinian
biological relation of evolution. This appearance, however,
is only skin deep — the term is applicable to both ideas only
if it is used equivocally. ‘Specialization’ has at least two dis-
tinct meanings, one that refers to the Darwinian relation,
and one that refers to the Aristotelian relation. (Although
‘specification’ is a more accurate term for the Aristotelian
relation, this is a different sense of ‘specification’ than is
commonly used in computer science). ‘Generalization’, on
the other hand, is applicable only to the Aristotelian rela-
tion: we could not say ‘homo erectus is a generalization of
homo sapiens’. Finally, it is worth noting that UML uses
the terms ‘specialization’ and ‘generalization’ rather than
‘inheritance’.

On Interface and Implementation ‘Inheritance’ Given
the previous analysis, it may be tempting to conclude that
the Aristotelian relation of logical abstraction corresponds
to ‘interface inheritance’ and that the Darwinian relation of
evolution corresponds to ‘implementation inheritance’. This
conclusion, however, is not warranted. Although the Dar-
winian relation seems quite suited to the idea of ‘implemen-
tation inheritance’ because of the metaphor of genetic trans-
fer as ‘implementation’, it does not follow that a relation
between programming classes which is modeled on the Aris-
totelian relation could not involve code-sharing, nor does it
follow that a relation between programming classes which is
modeled on the Darwinian relation could not involve inter-
face sharing.

When ‘implementation inheritance’ and ‘interface inheri-
tance’ are held as contrary terms there is a twofold distinc-
tion: the former implies code-sharing whereas the latter does
not; and that the latter one alone allows the transference
deduction to be concluded with certainty. The Aristotelian
logical relation allows us to conclude the transference de-
duction with certainty in all cases, but some deductions still
hold under the Darwinian biological relation, e.g.:

Homo erectus stands upright.
Homo sapiens evolved from homo erectus.
∴ Homo sapiens stands upright.

The reason that we cannot always conclude with certainty
when using a Darwinian-like relation is that, for Darwin,
species are only accidentally different — whereas for Aris-
totle, genus and species are related essentially. When we
employ an Aristotelian relation in a transference deduction,
we immediately see how the premises are the ‘cause’ of the
conclusion. Such ‘causation’ is not always present in the
Darwinian-like relation, for example:

Uni-cellular organisms are asexual.
Man evolved from uni-cellular organisms.
∴ Man is asexual.

Beta and Smalltalk In programming languages like Beta
the intended relation between sub-class and super-class seems
closer to the Aristotelian relation of logical abstraction, whereas
in languages such as Smalltalk it seems closer to the Dar-
winian relation of evolution. This seems evident both in
language used to speak of them and in their design. For ex-
ample, the Beta inner construct and static typing make it
easier to conclude the transference deduction with certainty
— whereas arbitrary method overriding and dynamic typing
in Smalltalk make the conclusion of the transference deduc-
tion less certain. Of course, it is possible for a programmer
to use the relation between sub-class and super-class in ei-
ther programming language in a fashion which is either more
Aristotelian or more Darwinian. Interestingly enough, this
choice has been referred to as an ‘essential’ use of inheritance
vs an ‘accidental’ use of inheritance [30].

2.2.3 On the Notion of Inheritance
The term ‘inheritance’ is often used in a metaphorical fash-
ion in object-oriented programming to describe the relation
between a sub-class and a super-class. Here we compare the
meaning of the word inheritance with five kinds of trans-
ference relations: that of a prototype and its imitation; in-
cremental modification; the Darwinian relation of evolution
between species; the Aristotelian relation of logical abstrac-
tion between a species and a genus; and the Aristotelian
relation of logical abstraction between an individual and a
species. We include the incremental modification relation
here because it has been said to be the ‘essence’ of inher-
itance (or, more precisely, incremental modification in the
presence of a late-bound self-reference [35, 32]). We find
that ‘inheritance’ seems to be an acceptable metaphor for
the first three relations, but that it is an exceedingly poor
metaphor for the Aristotelian relations of logical abstrac-
tion.

The Meanings of the Word The word ‘inheritance’ can
be used to signify a number of different things in English.
Its first meaning is from economics, and signifies external
material possessions passed down from parent to child (usu-
ally on the death of the parent). In this first meaning, there
are five important elements to note: something external is
transferred from one individual to another; the two individ-
uals are in a temporally ordered relationship; and there is

a real dependence of the recipient upon the donor. Sub-
sequent English usages speak to ‘inheritance’ in a biologi-
cal way (heredity), or to social or cultural traits (heritage)
passed down from one to another, and such uses are at least
as old as Shakespeare. When we move from external goods
to passing down either physical or social traits, we seem to
be using ‘inheritance’ in a metaphorical way. This is also
the case when we speak of ‘inheritance’ between groups of
people, although in the English usage of the word, this is
said usually because of some real transference between the
individuals in those groups (and this does not deviate as
far from the original meaning as does speaking of a relation
strictly between universals).

Evaluating the ‘Inheritance’ Metaphors In Table 2 we
summarize our analysis of ‘inheritance’ as a metaphor for
the five transference relations given above against the five
criteria for the meaning of the word, also given above. The
five criteria are indicated as follows: Tr indicates transfer-
ence; Ext indicates external goods; Ind indicates individu-
als; Time indicates temporal ordering; and Dep indicates
dependence. A check (

√
) indicates that the usage conforms

to the original notion; an x (×) indicates that it does not
meet the criteria; and a bullet (•) indicates that elements of
the original notion are present in some fashion.

As a metaphor for: Tr Ext Ind Time Dep

Prototype/imitation
√ × √ √ √

Incremental modification
√ × √ • √

Darwinian species/species
√ × • √ √

Aristotelian species/genus
√ × × × ×

Aristotelian ind./species
√ × × × ×

Table 2: Evaluation of ‘Inheritance’ Metaphors

As can be seen from Table 2, all of these metaphorical usages
of ‘inheritance’ retain the notion of transference, and none
of them speak of external goods.

As a Metaphor for the Transference Relation between
Prototype and Imitation This is the case in which the in-
heritance metaphor seems most suitable: there is a transfer-
ence between individuals that exist in a temporally ordered
relationship, with real dependence of the recipient upon the
donor. The only discrepancy with the original meaning is
that the transfer is not of external goods. However, this
metaphorical use of the word ‘inheritance’ is in accordance
with some of the commonly accepted metaphorical uses of
the word in English.

As a Metaphor for Incremental Modification The
‘inheritance’ metaphor seems to be suited to the idea of in-
cremental modification, notwithstanding the use of the word
‘class’ to describe a fragment of program text (and we will
now substitute the word ‘module’ for ‘class’ in this para-
graph). Clearly the derived module is dependent on the
base module. The phrase incremental modification implies
that the derived module is written after the base module
but, due to refactoring, this is not always the case (hence
the • in Table 2). There is, however, a potential problem
if we use the term ‘class’ for a fragment of program text
and use the term ‘incremental modification’ to describe the

relation between a sub-class and a super-class. We have to
be clear on whether ‘incremental modification’ refers to the
concept that the name of the class signifies, or whether it
refers to the fragment of text that represents the class. If we
model the relation between sub-class and super-class on the
Darwinian biological relation of evolution, then ‘incremen-
tal modification’ is an apt term for both. If, on the other
hand, we model the relation between sub-class and super-
class on the Aristotelian logical relation of abstraction, then
we have a problem: the text that represents the sub-class
may be an incremental modification of the text that repre-
sents the super-class, but the idea represented by a species
is not an incremental modification of the idea represented
by its genus. We cannot say that ‘man is an incremental
modification of animal’. This kind of error involves switch-
ing modes of supposition within an argument (a topic we
will address later).

As a Metaphor for the Darwinian-like Relation be-
tween two Species The ‘inheritance’ metaphor in pro-
gramming has been likened to the Darwinian-like relation
of two species, with the conclusion that the metaphor is ac-
ceptable (e.g. [34]). As Table 2 shows, this metaphor is in
accordance with commonly accepted metaphorical uses of
the term in English: it clearly meets the temporal order-
ing and dependence criteria; and it speaks of a transference
between species because of a real transference between indi-
viduals (an allowance that is made in some common English
usages of the word).

As a Metaphor for the Aristotelian Logical Relation
of Genus and Species As Table 2 shows, the only com-
mon criteria between the meaning of the word ‘inheritance’
and the Aristotelian logical relation of genus and species is
that there is some kind of transference involved. As ex-
plained previously, there is no temporal ordering between
genus and species, neither is there dependence of one on the
other; and obviously they are not individuals. Moreover,
the individuals of the species belong also to the genus, so we
cannot appeal to the idea of a transference between univer-
sals based on some real transference between the individuals
(as we can for the Darwinian relation of evolution).

As a Metaphor for the Aristotelian Logical Relation
of Species and Individual ‘Inheritance’ is also a poor
metaphor for the Aristotelian logical relation of abstraction
between a species and an individual. The only thing that
the two ideas have in common is some notion of transference.

One of the important points of this paper is to show that the
notion of transference is extraordinarily common, and that
this basic notion is involved in more sophisticated ideas that
differ from each other essentially. It is important that we
see the differences between these things that are similar, as
well as seeing the similarities between these things that are
different.

2.2.4 Accidental Relations: Proper and Common
The non-essential tells us not what something is but, in-
stead, what belongs to or inheres in the subject in some way.
From the viewpoint of definition, even these non-essential
connections can help us to distinguish adequately one kind
of thing (i.e. species) from another. These non-essential

connections, also called accidents (that which occurs in a
subject), are of two kinds: proper accidents (or property)
which coincide with the species (definitum), and common
accidents (simply called accident when contradistinguished
from a property).

A property is something that is not the essence of the defini-
tum and yet belongs to that species alone, and is convertible
with the logical subject (i.e. can be used wherever the logi-
cal subject is used). Some examples of properties are ‘man
forges tools’ and ‘gold is the most malleable metal’. There is
a close relation between essence and proper accident, since a
proper accident exists in a subject because of its essence. It
is because the essence of man is to be ‘rational animal’ that
activities such as ‘grammatical’, ‘risible’, ‘self-determining’
are properties that flow from his nature.

The common accident can be contingent either because it is
found in only some of the individuals in a species or because
it is found in individuals of different species. If it is found in
only some individuals in a species it is ‘too small’ to be used
for defining. If it is found in more than one species it is ‘too
great’ to sufficiently differentiate the species within a genus.
However, because what is contingent cannot serve as a basis
for differentiating a species within a genus, we should not
be too quick to dismiss the value of such accidents found
within different species. Combinations of these accidents
may occur only within the definitum. Plato defines man as
‘a featherless, furless, biped with fingernails and toenails’.
Such a definition can teach us something very important in
terms of defining by accidents: what is all important is the
specifying difference. If the specifying difference does not
adequately distinguish the definitum within its genus, then
either it includes things which should not be included or ex-
cludes things which should not be excluded. For example, if
we try to specify ‘man’ with just ‘furless biped’ then we will
include things which should not be included in the species
man (e.g. birds). To specify ‘man’ as only ‘featherless and
furless’ would include snakes and naked mole rats, amongst
other creatures.

Most programming languages do not allow the programmer
to distinguish between proper and common accidents. From
the standpoint of logic we see this as a limitation, as do Gro-
gono and Sakkinen from more practical grounds. They ar-
gue that identifying ‘essential’ and ‘accidental’ attributes to
the compiler facilitates the automatic generation of semanti-
cally appropriate copy and clone operations [17]. They note
a twofold distinction of ‘essence’ and ‘accident’. They do not
consider this sufficient for their purposes. They refine this
to a fourfold distinction with three normal cases and one
abnormal one (for the programmer to override the default
behaviour). Perhaps their three normal cases correspond to
‘essence’, ‘proper accident’ and ‘common accident’.

2.3 Determination of the Categories
To define well what something is (using our terms univo-
cally) we need to talk about its real being. Now, ‘whatever
is’ must exist in one of two ways. Aristotle designates these
two modes of real being as substance and accident. These
mutually exclusive notions exhaust the whole of ‘whatever
is’ and must be seen as co-relative. The logical notion of sub-
stance is ‘that to which it belongs to exist in itself and not

in another’; the logical notion of accident is ‘that to which it
belongs to exist in another and not in itself’. ‘Substance’, in
English Aristotelian thought, is a sometimes criticized trans-
lation of the Greek ousia — a word that is linked etymolog-
ically to the word for ‘being’. Consequently, ‘substance’ has
a broader meaning in English Aristotelian thought than does
‘matter’. The meaning of ‘substance’ in the Beta concep-
tual framework [23] is closer to the Aristotelian notion of
‘matter’ (although this is an issue worthy of further study).

Now since classifying, or defining, is to say what kind of
something the subject is, we must bear in mind the dis-
tinction between the universal and the singular: only the
universal is predicable of a subject; the singular, never a
predicable, is the ultimate subject of which everything is
said. These distinctions are illustrated in Table 3.

Substance Accident
that to which exist in itself exist in another
it belongs to ... and not in another and not in itself
Universal
be predicable man colour
of a subject
Singular
be the subject of Socrates the paleness
what is predicable of Socrates

Table 3: Universal and Singular contrasted with
Substance and Accident

Aristotle notes [Categories §2] that the universal is predica-
ble of a subject whereas the singular is not. The universal
‘man’, for example, is predicable of, or can be used in defin-
ing ‘Socrates’. The singular ‘Socrates’ is not predicable of
anything, and so cannot be used to define. ÃLukasiewicz, who
takes a different view, claims that the singular is predicated
of something and supports this with four examples from
Aristotle: 1) ‘that white object is Socrates’, 2) ‘that which
approaches is Callias’, 3) ‘Socrates is Socrates’, 4) ‘Sophro-
niscus was the father of Socrates’ [21, p.6]. In each of these
examples, however, the relation is one of identity and not
predication. Operational statements in mathematics, e.g.
‘1 + 1 = 2’, are also statements of identity or sameness.
‘2’ is not being seen as predicated of ‘1 + 1’ but is seen as
another way of saying ‘1 + 1’. On the contrary, when we
predicate one thing of another, the predicate must be con-
sidered, necessarily, as greater than the subject because we
‘situate’ the subject in the context of what kind of thing it
is.

2.3.1 Etymology of ‘Category’
Category comes from the Greek word kategoria, literally, ‘to
speak in the agora’; agora is the Mediterranean notion of
the ‘plaza’, the daily gathering place for the ancient Greek
neighbourhood or community to discuss political, religious,
and commercial affairs. Kategoria, involved ‘speaking about
something in a public forum’ (forum, in fact, is the Latin
equivalent of agora).

Aristotle’s treatise on the Categories is primarily ordered
to speaking properly about any subject, that is with clas-
sifying or situating any subject in its proper place. Our
English word, predicament, is derived from the Latin prædi-

care which also emphasizes ‘asserting publicly’, or ‘speaking
about things with others’. This is why Aristotle’s treatise
on the Categories is entitled Prædicamentorum in Latin.7

Both the Greek kategoria and the Latin prædicamentorum
originally refer to dialogue (in its turn, ordered to logos).
To escape multiple monologues it is necessary to keep the
discussion focused on the subject. Developing this focus is
Aristotle’s purpose in the Categories. If the contemporary
meaning of category is closer to ‘class’ or ‘type’, then we
can say that Aristotle’s concern in the Categories is with
classification.

2.3.2 Aristotle’s Ten Categories
Aristotle’s logical categories are what we would call supreme
genera, sometimes referred to in computer science as top
level ontological categories (e.g. [31]). For example, if we
classify humans as animals, and animals as living things,
and living things as natural substances, we can see that the
supreme category is substance. Substance is the ultimate
category for whatever exists in itself and not in another (note
that substance and accident are modes of being, not species
of being).

For that which exists in another and not in itself, that is, for
what belongs to or inheres in a substance, Aristotle posits
nine supreme genera of accidents. These are not some ar-
bitrary enumeration, but categories at which he arrives by
careful divisions.

Accidents may be divided into intrinsic and extrinsic. Those
which are intrinsic may be subdivided into those absolutely
intrinsic and those relatively intrinsic. Those accidents ab-
solutely intrinsic to a subject are its matter and its acciden-
tal form, and these give rise to the categories of Quantity
and Quality, respectively. What is relatively intrinsic is
something that inheres in the subject but which refers us to
another, and this is what belongs to the category of Rela-
tion.

The extrinsic accidents he divides according to causality, ac-
cording to measurement, or according to neither causality
nor measurement. What is divided according to causality
looks at the subject either as a cause (Activity), or is in
the subject as an effect (Passivity). The division of acci-
dent according to measurement can be either according to
time (When), or according to place: the latter can be sub-
divided either absolutely (Where) or relatively (Position
— that is according to the disposition of its internal parts).
The final category, that which belongs to the subject nei-
ther according to causality nor according to measurement is
what Aristotle designates as Habit (in the sense of wearing
clothes or decoration).

Commentators in the Middle Ages made further sub-divisions
but the categories themselves were never challenged until

7We prefer to keep the term ‘predicament’ rather than ‘pred-
icate’ because the later belongs more properly to the vocab-
ulary of the second act of reason, where something is pred-
icated of a subject with truth or falsity. The use of pred-
icate in modern mathematical logic (i.e. first order predi-
cate calculus) refers to function (in the mathematical sense).
This meaning originates with the nineteenth century Ger-
man mathematician Gottlob Frege.

Kant did so in his Critique of Pure Reason, by adopting
an a priori viewpoint. Those who wish to pursue different
structural interpretations of reality might want to consult
John Sowa’s new book, which gives an overview of Aristotle,
Kant, Peirce, Husserl, and Whitehead within the context of
computer science [31].

2.4 Logical Division
We have continued to stress that all of the considerations of
the first operation of reason are for the sake of defining well.
To do this we must know what kind of thing each thing is,
hence we must see what distinguishes, separates, or divides,
one species from all others within the same genus. The
necessary tool in order to achieve this is division. Division
is first developed by Plato, and is evident in his definitions
of the sophist and the angler. Rose explores this relation in
depth [27], and suitably so, for as Sir David Ross insists:

Aristotle’s translation of Plato’s metaphysical doc-
trine into a doctrine from which the whole of for-
mal logic was to be developed is a most remark-
able example of the fertilization of one brilliant
mind by another. [29]

Aristotle speaks of two fundamental kinds of division: the
division of a universal whole into its specific parts, and the
division of an integral whole into its composing parts. The
first kind of division is that of genus into species. The sec-
ond, of a whole into its composing parts, is referred to in
the computer science literature as aggregation, composition,
has-a, consists-of, contains, and is-a-part-of. Logical divi-
sion, as is all human activity, can be done well (or perhaps
with greater ease, done poorly). Traditional logic arrives at
some common sense rules for making good divisions:

1. The parts must be inferior to the whole. By
definition, a part cannot be greater than that of which it
is a part. This emphasizes what is meant by ‘part’ and
what is meant by ‘whole’. This does not mean that we
can divide into singulars, however, because the difference
between singulars are only material — whereas form makes
something to be the kind of thing that it is.

2. The division must be exhaustive. This rule states
that the members of a division must exhaust the whole which
is being divided. In the practice of programming we often
simply enumerate some species within a genus rather than
making a complete division of the genus. For example, a
program that is only concerned with rectilinear shapes may
not define a circle class (and hence does not fully divide the
genus of shape). We take similar shortcuts when dividing an
integral whole into composite parts, because the program is
only a model whose purpose is to solve a practical problem,
rather than to initiate a philosophical investigation of the
subject matter.

3. The parts must be formally opposed. ‘Mutually
exclusive’ is the intent of ‘formally opposed’ in getting to
the purpose of this rule. Any division in which the dividing
members overlap (such as dividing person into student and
female) is a bad division.

Opposition may be between different subjects in a genus or
differences that exist in a subject. Every opposition, how-
ever, must be either negative or affirmative, between a mode
of being and not-being or between a mode of being and being.
The two modes of opposition between subjects are contradic-
tory and contrary. The two modes of opposition in a subject
are privative and relative. These distinctions are illustrated
in Figure 1, where plus (+) indicates ‘being’ and minus (−)
indicates ‘not-being’, so plus/minus (+/−) indicates oppo-
sition between ‘being’ and ‘not-being’.

Opposition





between subjects

{
contradictory (+/−)
contrary (+/+)

in a subject

{
privative (+/−)
relative (+/+)

Figure 1: Modes of Opposition

Contradictory opposition is a pure opposition which divides
perfectly because it involves affirmation and negation of be-
ing with respect to the same subject; for example something
is either rational or non-rational. Contrary opposition is be-
tween two positive terms which are extremes within the same
whole which is being divided, for example, between rational
(according to reason) and absurd (contrary to reason), or
dividing sex into male and female.

Privative opposition is between the presence and absence of
a characteristic within a subject which is intended to have
that perfection which is lacking in it. For example, ratio-
nal and irrational activity: only that which is intended by
nature to act rationally can act irrationally. Similarly, blind-
ness is a lack of seeing, but it can be said only of that which
by nature is intended to see.

The fourth type of opposition is not truly opposition for
one member does not exclude the other, but it still refers
to or relates to the other. The simplest example of relative
opposition is in family relations; for example, parent and
child. One is not a child unless there is referral to a parent,
or a parent unless there is a child (notice also that one can
be both parent and child at the same time, but in different
respects).

The kind of division used determines the view of the defini-
tum and a division is only as strong as the mode of opposi-
tion employed in making it. For example, to divide animals
by contrary opposition into those that live on land and those
that live in water is not a good division since amphibious
creatures do both, and flying creatures do neither.

Currently, there is no one way to express different kinds of
opposition in programming languages or knowledge repre-
sentation formalisms. Exceptions may be used to express
privation, but may also be used for other purposes. We
know of one work that considers explicit expression of con-
tradiction in object-oriented programming [1].

4. There must be a consistent basis in each division.

The fourth rule, that there must be a consistent basis kept
throughout the division, is the most subtle, and so we will

first give an example: student may be divided by sex into
male and female; by degree into graduate and undergraduate;
by faculty according to the organization of the university;
and so on. The different terms result from a different basis
of division of the subject. An example of a division made
without a consistent basis of division would be of ‘human’
into respiratory system and appendages: the first division is
based on function, the second is based on mode of attach-
ment.

The idea of the basis for the division is represented in object-
oriented programming most closely by the UML notion of
discriminator. The idea is also captured in some knowledge
representation formalisms, such as Loom [22], which names
it partition. In Loom, if a genus is divided according to
different bases, the tool ensures that these species may not
be subsequently merged. We think that programming lan-
guages should allow for explicit representation of the basis
for division, and should enforce some rules with respect to
it (as is done in Loom).

2.4.1 Squares, Rectangles and Abstract Super-classes
Winkler [36] initiated a discussion in Communications of
the ACM a few years ago as to whether Square should be
a sub-class of Rectangle or Rectangle should be a sub-class
of Square. The former approach was thought to follow a
‘concept-oriented view’, whereas the latter represented a
‘program-oriented view’, because the dictionary defines a
square as a type of rectangle, but only one data member is
necessary for a Square class and two are required for Rect-
angle. Grosberg [18] resolved this problem by saying that
a class that has sub-classes may not have direct instances
and, conversely, that a class that may be directly instanti-
ated may not have sub-classes. Hürsch [19] later formulated
this as the abstract super-class rule, which his analysis de-
termined was a good programming guideline.

The abstract super-class rule is in direct accordance with
the Aristotelian ideas that we have just expounded. First
of all, the Aristotelian notion of genus is very much like an
abstract super-class; for example, there is nothing of which
we can say that it is an animal without being able also to
specify what kind of animal it is. Secondly, having a single
sub-class violates the rules of logical division: a thing cannot
be divided into one; it must be divided into at least two —
otherwise the thing being divided is not an abstraction. The
abstract super-class rule forces one to divide the problem in
a manner similar to Figure 2, where right-angled, four-sided
geometric figures are divided into equal-sided (Square) and
non-equal-sided (Rectangle).

Right-Angled





four sided

{
equal− sided
non− equal− sided

non-four sided

Figure 2: Division of right-angled geometric figures.

2.5 Definition
The culmination of the first operation of understanding, and
the reason for all of our prior considerations, lies in the art
of definition. Definitions may be either nominal or logical.

Nominal definitions are concerned with the material aspects
of the words themselves, rather than with the concepts which
the words represent. Nominal definitions may be divided
into etymological (explaining the origin of the word) and
common usage (describing the various ways in which people
have used the word).

Our concern is with logical definition, which attends to the
concept that is signified by the word. We now know that a
logical definition must contain both a proximate (immedi-
ate) genus and a difference that adequately distinguishes the
definitum in a specifying way. There can be many different
kinds of logical definitions, because of the different ways in
which they specify the definitum.

There are two ways to define something such that the spec-
ifying difference is in terms of intrinsic principles. The first
is the essential definition, which specifies or tells us in the
definition the kind of thing the definitum (species) is. For
example, in the statement ‘man is a rational animal’, the
species to be defined (the definitum) is ‘man’, the proximate
genus is ‘animal’, and the specifying difference is ‘rational’.

The second kind of definition according to what inheres in
the subject, is a non-essential definition which can be ei-
ther by a proper accident or a common accident (property
or accident). Both of these tell us something about the sub-
ject other than what it is. Since a property belongs in an
exclusive way to the species, it too provides a distinctive
difference; for example, ‘man is a tool-forging animal’. The
definition by common accident can adequately distinguish
a definitum (species) only when multiple trans-specific acci-
dents coincide in this species; for example, Plato’s definition
of man ‘featherless, furless biped with fingernails and toe-
nails’. These are the three kinds of definition which use
intrinsic principles as specifying differences.

The definitum (species) can also be adequately differenti-
ated within its genus by what is extrinsic; for example, by
operational or causal definitions. The operational definition
designates (or at least implies) a standard of measure and
an indication of the specifying result; for example, ‘man is
an animal with forty-six chromosomes’. In the experimen-
tal sciences, which use operational definitions, subjects are
defined in terms of the way in which they are measured and
the results of that measurement. For example, water may be
defined as a liquid that boils at a certain temperature and
freezes at a certain temperature (note that these tempera-
tures must be given with respect to a pressure). The causal
definition must employ at least one of the extrinsic causes
(the agent or the end); for example, ‘man is an animal who
chooses what he sees as good in order to be happy’.

In the Aristotelian tradition, the specifying differences for
artificial things can be given only in terms of what is ex-
trinsic to the subject since artifacts are dependent for their
being on the agent and his intention. Some computer sci-
entists have commented on the difficulty of attempting to
define artificial things intrinsically; for example, Wegner on
the notion of table [34, p.551], or Sowa on the notion of
chair [31] (which must be distinguished from a toilet by its
final cause or purpose).

Definition is critical to both a science and a program, be-
cause neither the one nor the other is distinguished by its
subject matter, but instead, by the way in which it defines
or treats its subject. Human nature is the subject of both
anthropology and psychology: these sciences differ by the
way in which they define the subject, rather than by the
subject itself. Likewise, many programs may be concerned
with the same logical subject but in different respects, and
because of this will want to define the subject in a different
light. We think it would be of benefit to programmers to
be able to explicitly express the logical definition(s) of the
subject(s) within programs.

3. THE SECOND ACT: PREDICATION
If we consider a class as a logical subject (i.e. as a species
or as a genus), then we may also consider attributes and
operations (fields and methods) as things that we say, or
predicate, of a subject. This is the concern of the second
operation of reason.

Once we have grasped adequately the notion of the sub-
ject we are speaking about, we can now begin to make a
statement about it — an activity called predicating in the
Aristotelian tradition. Statements are often referred to as
propositions but, strictly speaking, a statement becomes a
proposition only when it is proposed for the sake of some
conclusion (a notion belonging to inference in the third act
of reason). At the risk of oversimplification, we will affirm
that the logical statement is composed of three parts:

• subject (that of which something is said)

• predicate (that which is said of a subject)

• verb copula (the verb ‘to be’)

The verb ‘to be’ is important in the proper formation of a
statement because we address the being of the subject when
a predicate is affirmed or denied of the subject by means of
the verb copula. A statement in its proper form looks like
this: ‘man / is / an animal’; or ‘man / is not / a machine’.
A statement such as ‘our linesmen play tough defence’ in
its proper statement format would be ‘our linesmen / are /
players who play a tough defence’.

Because a statement affirms or denies something about the
very being of the subject, every statement we make has the
property of being either true or false (something determined
by what is predicated). The elements of the statement (ei-
ther the subject or the predicate) by themselves, are neither
true nor false. Only when the composite expression (the
statement) affirms or denies the predicate of the subject
does truth enter in.

3.1 Divisions of Statements
Traditional logic divides statements (propositions) accord-
ing to their kind of unity — how they are one, either ab-
solutely or relatively. Those which are absolutely one are
called categorical statements (named from category as dis-
cussed earlier) and these are divided according to quality,
according to quantity, and according to matter. We will now
examine each of these divisions.

the division of the categorical statement according to

unity

{
absolute
relative

categorical
compound

A statement is absolutely one when it predicates one thing
(thus called the predicate) of another (called the subject) by
means of the verb copula. Such categorical statements are
necessarily true or false depending on the kind of matter in
the content of what is predicated.

Statements which are relatively one are called compound
statements because their elements are categorical statements
linked (copula) by some operational connective, rather than
the verb copula; for example, if humans are rational, then
they are able to create works of art. The principal kinds of
compound propositions are the conditional (if <categorical>
then <categorical>), the conjunctive (both <categorical>
and <categorical>), and the disjunctive (either <categor-
ical> or <categorical>). Each species of compound propo-
sition is treated as an affirmative and each has distinctive
properties of truth or falsity which depend on the copula.

Current object-oriented programming languages usually per-
mit only the expression of categorical statements. Nearly all
programming languages contain conditional statements —
such conditional statements, however, are used to express
control-flow rather than relations between classes. Com-
pound statements (including conditionals) in traditional logic
express relationships between classes. We will return to
compound statements after examining the categorical state-
ments of which the compound statements are composed.

the division of the categorical statement according to

quality

{
affirmative
negative

In traditional logic, the quality of a statement is what is
most essential. A categorical statement is either affirmative
or negative on the basis of whether the predicate is affirmed
of the subject or denied of the subject. This primary division
applies to the statement or proposition as a whole and is not
to be confused with the statement having a negative subject
or a negative predicate. The statement ‘every non-animal is
a non-horse’ is an affirmative statement.

Most current object-oriented programming languages do not
contain an explicit verb copula; statements are implicitly af-
firmative. The ‘ShouldNotImplement’ mechanism of Smalltalk
is a notable exception to this. Exceptions (in the program-
ming language sense) are used also to substitute for a nega-
tive verb copula, although it is not always clear when they
are being used in this way because of their relation to pro-
gram execution. Vlissides gives an example of exceptions
(again in the programming language sense) being used to ex-
press the categorical negative proposition file nodes cannot
contain other nodes [33]. His example models a hierarchical
file system, which can be expressed by the following cate-
gorical statements: files are nodes; directories are nodes; a
node may contain other nodes; file nodes are not nodes that
can contain other nodes. He discusses the trade-offs between
replacing the last two statements with directory nodes may
contain other nodes, or keeping them as stated.

the division of the categorical statement according to

quantity

{
universal
particular

every or none
some

The quantity of the categorical statement is determined by
the quantity of its subject. The subject may be either of
universal or particular quantity, depending on whether we
are predicating something of the whole of the subject or
of only part of the subject. A universal subject best uses a
grammatically singular form of the verb copula. The univer-
sal, expressed in terms such as every, any, etc., is treated
as a grammatical singular because one nature is being sig-
nified. In Aristotelian logic every is the preferred manner
of expressing a universal affirmative statement because all
can be used either as a universal or as a collection.

These concepts of universal and particular quantity need
to be distinguished from the universal (∀) and existential
(∃) quantifiers used in first order predicate calculus. Aris-
totelian logic employs universal terms, and first order predi-
cate calculus employs singular terms, and this is the root of
the distinction. It is very easy to confuse these two notions
of quantity, however understanding the difference has led to
improvements in static call graph construction algorithms
for class-based languages.

One of the problems is that ∃ is now read as ‘there exists’.
This association was not made in the early days of first or-
der predicate calculus, but begins to be found in the later
writings of Bertrand Russell, and finds its fullest expres-
sion in the writings of Quine. The particular quantity in
Aristotelian logic is expressed by ‘some’ and should not be
read as ‘there exists’. ‘Some’ may be read as ‘there exists’
only when speaking of immaterial beings (e.g. mathemat-
ical ones, such as numbers). For example, ‘some numbers
are greater than ten’ is equivalent to ‘there exists a number
greater than ten’. However, ‘some people have red hair’ is
not equivalent to ‘there exists a person with red hair’ — now
we are speaking with universal terms and of material beings.
When we say ‘some people have red hair’ we are speaking of
part of the nature rather than making an ‘ontological com-
mitment’ to the existence of such a person. Orenstein gives
an excellent discussion of these issues in his book Existence
and the Particular Quantifier [26], and Rose [27] also de-
fends Aristotle against accusations of inconsistency leveled
by Boole with respect to the notion of existential import.8

Understanding that this notion of quantity speaks of a na-
ture (expressed in a universal) rather than of the existence
of singulars is root of the distinction between Rapid Type
Analysis [7, 6] and Class Hierarchy Analysis [14, 15]: Rapid
Type Analysis is an improvement over Class Hierarchy Anal-
ysis because it removes uninstantiated classes from the call
graph. Speaking of a nature does not entail the existence
of material singulars; defining a class does not entail that it
will be instantiated.

the division of the categorical statement according to

matter





what is necessary
what is impossible
what is neither necessary nor impossible

8Incidentally, Boole’s criticism is the reason that first order
predicate calculus considers only contradictory opposition.

The final division of the categorical proposition, the one the
lies at the very core of the determination of truth or fal-
sity for any statement, is the one that completely separates
traditional logic from symbolic logic. This is the division
of the statement according to its matter, the content rather
than the form (although the form must be appropriate to
the matter).

A statement has necessary matter when the predicate in-
heres in the very nature of the subject per se. This means
according to what the subject is or what necessarily fol-
lows upon the kind of being which it is: for example, ‘every
human is rational’ or ‘every human is capable of artistic
expression’. A universal affirmative statement is true only
when the matter is necessary.

A statement has impossible matter when the predicate can
never be said of the subject. Traditional logicians describe
impossible matter as what is per se repugnans, or inimical,
to the very nature of the subject. An example of impossible
matter would be no animal is a stone. A universal negative
statement is true only when the matter is impossible.

When the matter is neither necessary nor impossible it is
said of a subject only contingently (or accidentally) — it
may or may not be found in a given subject: for example,
‘some people have red hair’. When the matter is contingent
both the particular affirmative and the particular negative
can be true simultaneously. Without a grasp of the predica-
ble relations from the first operation of reason we would not
know what should be the appropriate quantity of a state-
ment.

3.2 Supposition
Not only is the second operation concerned with the prop-
erties of statements, but with how the subject stands in re-
lation to each predicate. This kind of distinction is found in
programming languages such as Smalltalk, which has both
class and instance level attributes. Mediæval logicians re-
ferred to this facet of statements as modes of supposition, or
what is ‘supposed’ by the subject in relation to each pred-
icate. Supposition becomes a serious concern when state-
ments are used in an argument, because terms in an argu-
ment must not only keep the same signification, but also the
same supposition.

Real Supposition In this mode of supposing, the subject
in relation to what is predicated of it, stands for the nature
of the species and for all of the members of the species (i.e.
for the intension and the extension). If we say that ‘man
is rational’, the term ‘man’ in this context, stands both for
human nature and for all of those the individuals in which
that nature is found.

The term personal supposition was used in mediæval times
to signify that what was supposed was not simply the species,
but all of the personae (or individuals) of that species.

Logical Supposition In this mode of supposing, the sub-
ject, in relation to what is predicated of it stands for the
nature of the subject alone. It does not stand for any of
the individuals of the species but only for the concept; it
does not refer to real beings (i.e. for the intension only).

Consequently, what is predicated is simply a logical rela-
tion. ‘Man is a species of animal’, for example, cannot be
said of individual men because what is supposed by ‘man’ in
this case, is only the logically universal nature. We cannot
change supposition within an argument, even if the premises
are true, as in the following illustration:

Man is a species of animal.
Socrates is a man.
Therefore, Socrates is a species of animal.

Fallacious arguments using both logical and real supposition
might say that since 1 out 3 people will die of heart disease,
then heart disease will the be the cause of death for 2 people
in a family of six.

Obviously logical supposition can only be expressed using a
grammatical singular, since here we are speaking only of the
nature and not of the individuals of that nature.

The notion of class level attributes in languages such as
Smalltalk is very similar to the logical mode of supposition.

Material Supposition In this mode of supposing, the sub-
ject, in relation to what is being predicated of it, stands only
for the composition of the word itself rather than for either
the logical or the real nature which the word can signify.
Again, changing what is being supposed in the use of the
terms within an argument may produce humorous fallacies.
The following goes from material to real supposition:

‘Man’ is a three-lettered word.
Socrates is a man.
Therefore, Socrates is a three-lettered word.

Using the phrase incremental modification to describe the
relation between two classes can lead to fallacy caused by
switching modes of supposition. Consider the mathematical
formalism for the relation between subclass and superclass
(‘inheritance’) given by Wegner and Zdonik [35] as R =
M + O (result = modification + original). If we take ‘man’
as O and ‘wo’ as M we get the result R = ‘woman’. This
becomes fallacious only if we switch from the material mode
of supposition to the real mode of supposition.

4. THE THIRD ACT: INFERENCE
It is sometimes said that object-oriented programming is
‘more natural’ to our reason. If this is the case, we posit that
it is because of its similarity to Aristotelian logic. Aristotle
initiated the formal study of logic by examining inferences
similar to our ‘transference deduction’. These inferences,
inspired by Plato’s method of division, were called ‘perfect’
by Aristotle. Their perfection has been model ever since of
how our reason should proceed in deduction.

4.1 Formal Inference — Categorical Syllogism
The first two millennia in formal logic were concerned with
the syllogism, a deductive formalism for the act of inference
or reasoning, which proceeds from what is more universal to

what is less universal — a composite expression in which one
thing being given another thing necessarily follows. Just as
we saw that there were two types of statements (categorical
and compound), so too there are two types of syllogism,
the categorical and the compound. Our focus in what is to
follow will be on the formalism of the categorical syllogism.

The inference in deductive reasoning is valid if the conse-
quent (conclusion) follows with real dependence upon the
antecedent (premises), or invalid if the antecedent is not
the cause of the consequent. The premises are designated
as the major premise (which is ‘major’ because it contains
the predicate of the conclusion), and the minor premise (so
called because it contains the subject of the conclusion).
The conclusion brings together its subject and its predi-
cate from the antecedent premises because of a middle term
which appears in both premises. The middle term is the
key to every argument because it is the basis, or cause, of
the inference. We can portray how this inference works in
various notations; at the beginning of this paper we phrased
the ‘transference deduction’ like so:

A is said of B major premise
B is said of C minor premise
∴ A is said of C conclusion

A is the major extreme; B is the middle term; and C is the
minor extreme. This may also be expressed as following:

AB BC
AC

For the remainder of this discussion we will use the follow-
ing phrasing (where S, M , and P stand for the subject of
the conclusion, the middle term, and the predicate of the
conclusion, respectively):

Every M is P major premise
Every S is M minor premise
∴ Every S is P conclusion

Which may also be expressed (without indicating the quality
or quantity of the statements) like so:

M P
S M
S P

4.2 The Matter and Form of the Syllogism
The proximate matter of the syllogism consists of the three
statements: the major premise, the minor premise, and the
conclusion. The remote matter of the syllogism is the terms
of which the statements are composed: the subject of the
conclusion, the predicate of the conclusion, and the middle
term. Each of these terms appears twice and only twice in
the syllogism.

The figure of the categorical syllogism is determined by the
position of the middle term. This is what determines the
three possible figures for syllogistic inference, illustrated be-
low (without indicating the quality or quantity of the state-
ments):

First
M P

S M
S P

Second
P M

S M
S P

Third
M P
M S

S P

4.3 The Perfection of the First Figure
Aristotle notes that a perfect syllogism needs nothing other
than what has been stated in order to make evident the nec-
essary consequence [Prior Analytics 24b22–23]. Rose pro-
vides a detailed account of the perfection of the first figure
in [27].

It is the first figure which makes a conclusion most evident
as a necessary consequence. We noted above that the three
figures of the syllogism are determined by the three possible
positions of the middle term that can provide valid syllogis-
tic inference. If we look again at figure one:

M P
S M
S P

we see that only in figure one does the middle term satisfy
both notions of ‘middle’. First of all, just as in figures two
and three, so in figure one, the middle term is ‘middle’ by
being related in the premises to both the subject and the
predicate of the conclusion. But the unique perfection of
figure one is that it is ‘middle in universality’ for, as the
diagram shows, it is greater in universality than the subject
of the conclusion (in the minor premise), and it is lesser
in universality than the predicate of the conclusion (in the
major premise). As a result it is perfectly evident that the
predicate must be said of the subject in the conclusion. And
because of the perfection of the middle term, it is the only
figure that can produce a conclusion that is universal and
affirmative. It is also the only figure that can validly infer all
four species of statements: universal affirmative, universal
negative, particular affirmative, and particular negative.

Second
P M

S M
S P

major premise
minor premise

conclusion

Third
M P
M S

S P

The identifying characteristic of figure two is that the middle
term occupies the predicate’s place in both the major and
minor premise. Because of this, it participates only partly in
the perfection of the first figure, for while the middle term is
greater in universality than is the subject of the conclusion
(like figure one), it is also greater in universality than is
the predicate of the conclusion and so it is not middle in
universality. Nevertheless, because it satisfies partially the
notion of ‘middle’ with respect to universality, it can produce
a valid conclusion — but only negative conclusions.

The third figure, on the other hand, has as its character-
istic that the middle term occupies the subject’s place in
both the major and the minor premises. It too participates
only partially in the perfection of the first figure, for here,
like figure one, the middle term is less universal than is the

predicate of the conclusion — but the middle term is less
universal also than the subject of the conclusion. Because
it is less universal than both the subject and the predicate
of the conclusion, it produces the least evident conclusion,
even when it is valid. And since the subject does not ‘drop
down’ (so to speak) as in figures one and two, but must
‘cross over’ from the predicate’s place in the minor premise,
the only possible valid inferences produced are statements
that are particular in quantity.

5. CONCLUSION
At the outset of our enquiry we posed the problem of the
complementary roles of meaning and formalism in concep-
tual integrity. We illustrated this with four examples of the
‘transference deduction’. Let us now address again the il-
lustrations with which we began:

1.
Every animal is mortal.
Man is an animal.
∴ Man is mortal.

2.
Man is mortal.
Socrates is a man.
∴ Socrates is mortal.

In these two illustrations, the predicate is said essentially of
the subject in the minor premise, and the relation of pred-
icate to the subject in the major premise is the predicable
relation of property. Hence we have statements that are
true. Further, the middle term in each inference is middle
not only by being attached to the major and minor premises
but, more importantly, by being a middle in universality.
For this reason the ‘inevitable’ inference is very evidently
both valid and true. By contrast, in the second pair of illus-
trations,

3.
Homo erectus stands upright.
Homo sapiens evolved from homo erectus.
∴ Homo sapiens stands upright.

4.
Key A opens this door.
Key B is a copy of Key A.
∴ Key B opens this door.

the resemblance to the first pair of inferences is only acci-
dental. And this resemblance is accidental in two distinct
ways. First of all, the middle term is only accidentally re-
lated to both the predicate and the subject in the major and
the minor premises of both arguments. By this we mean
that there is a relation only of predicable accident and, in
the minor premises, these are not sufficient differences to
adequately define the subject. Secondly, and even more im-
portantly, while the ‘middle term’ is attached to both the
subject and the predicate of the conclusion in the major and
minor premises, in both cases there is no dimension of ‘mid-
dle in universality’, which is the real basis for inference and
for validity in reasoning.

Conceptual integrity depends on rigorous formalism, but
such formalisms are advantagous only when real logical re-
lation is carefully discerned. It has been our contention that
Aristotelian logic will be of benefit to programmers in per-
forming their art with order, with ease, and without error [2].

5.1 Future Work
We see potential future work in both theoretical and prac-
tical dimensions. On the theoretical side, both the Beta
conceptual framework and the word ‘is’ are worthy of fur-
ther philosophical investigation (and these directions are not
unrelated). We would also like to see the impact of the use
of metaphor in programming investigated. On the practical
side, we think that there are many good ideas discussed in
this paper that may be of benefit for programming language
design. One area that we have not had space to explore in
this paper is the formalism developed for statements and
syllogisms in the Middle Ages: specifically, determinations
of the truth of statements and the reductions of the other
figures to the first figure. We also have some ideas for de-
signing a programming environment inspired by the form of
the syllogism.

Acknowledgements
First we would like to thank those who have patiently re-
viewed earlier drafts of this paper: Paul Asman, Scott Kerr,
Thomas Kuehne, Kim Mens, Tom Mens, Marcellus Mindel,
Amedeo Napoli, Gary Rathwell, Tarver Swejkowski, Kresten
Krab Thorup, and the anonymous referees. Paul Asman
and Marcellus Mindel have been particularly generous with
their time. We have also received some helpful comments
from Samantha Gross and Ole Lehrmann Madsen.

We would also like to acknowledge those who have encour-
aged us, as this work might not have been written other-
wise: Karel Driesen, Mohammed Kamel, Kostas Kontogian-
nis, Peter Sweeney, Dave Thomson, and Frank Tip.

Finally, this work was supported in part by the IBM Centre
for Advanced Studies and the National Research Council of
Canada.

6. REFERENCES
[1] Anquetil, N., and Vaucher, J. Expressing

opposition in the object model: Simple as NOT. ACM
SIGPLAN Notices 33, 1 (January 1998).

[2] Aquinas. In Libros Posteriorum Analyticorum
Expositio (Commentary on the Posterior Analytics of
Aristotle). Marietti, 1964. Original text composed
circa 1265 AD. Translation ours (where appropriate).

[3] Aristotle. Categories. In Ross [28]. Translated by
E.M. Edghill. Also available from The Internet
Classics Archive (http://classics.mit.edu).

[4] Aristotle. On Interpretation. In Ross [28].
Translated by E.M. Edghill. Also available from The
Internet Classics Archive (http://classics.mit.edu).

[5] Aristotle. Prior Analytics. In Ross [28].

[6] Bacon, D. F. Fast and Effective Optimization of
Statically Typed Object-Oriented Languages. PhD
thesis, University of California at Berkeley, December
1997. UCB/CSD-98-1017.

[7] Bacon, D. F., and Sweeney, P. F. Fast static
analysis of C++ virtual function calls. In Coplien [13],
pp. 324 – 341.

[8] Beck, K. Extreme Programming Explained. Addison
Wesley, 1999.

[9] Brachman, R. J. What is-a Is and Isn’t: An
Analysis of Taxonomic Links in Semantic Networks.
IEEE Computer 16, 10 (October 1983), pp. 30 – 36.

[10] Brooks Jr, F. P. No silver bullet: Essence and
accidents of software engineering. Computer 20, 4
(April 1987), pp. 10–19. Reprinted from Proc. IFIP
Congress, Dublin, Ireland, 1986.

[11] Brooks Jr, F. P. The Mythical Man-Month. Addison
Wesley, 1995. Twentieth anniversary edition.

[12] Bryant, A. ‘It’s Engineering Jim ... but not as we
know it’: Software Engineering — solution to the
software crisis, or part of the problem? In ICSE’00
(Limerick, Ireland, June 2000), M. Jazayeri and
A. Wolf, Eds., pp. pp. 78 – 87.

[13] Coplien, J., Ed. Proceedings of Object-Oriented
Systems, Languages and Applications (OOPSLA) (San
Jose, California, October 1996).

[14] Dean, J., Grove, D., and Chambers, C.
Optimization of object-oriented programs using static
class hierarchy analysis. In ECOOP’95 (Århus,
Denmark, August 1995), W. Olthoff, Ed.,
Springer-Verlag. LNCS 952.

[15] Diwan, A., Moss, J. E. B., and McKinley, K. S.
Simple and effective analysis of statically-typed
object-oriented programs. In Coplien [13],
pp. 292–305.

[16] Gjessing, S., and Nygaard, K., Eds. Proceedings of
European Conference on Object-Oriented
Programming (Oslo, Norway, August 1988),
Springer-Verlag. LNCS 322.

[17] Grogono, P., and Sakkinen, M. Copying and
comparing: Problems and solutions. In ECOOP’00,
E. Bertino, Ed. Springer-Verlag, Cannes, France, June
2000.

[18] Grosberg, J. Comment on considering ‘class’
harmful. CACM 36, 1 (January 1993), pp. 113 – 114.
Technical correspondence.

[19] Hürsch, W. L. Should superclasses be abstract? In
ECOOP’94 (Bologna, Italy, July 1994), M. Tokoro
and R. Pareschi, Eds., Springer-Verlag, pp. 12 – 31.
LNCS 821.

[20] LaLonde, W. R., and Pugh, J. Subclassing 6=
subtyping 6= is-a. Journal of Object-Oriented
Programming 3, 5 (January 1991).

[21] ÃLukasiewicz, J. Aristotle’s Syllogistic From the
Standpoint of Modern Formal Logic, 2nd ed. Oxford
Clarendon Press, 1957. A study of Aristotle’s Prior
Analytics from the Greek text. This study presents the
first modern mathematical formalism developed for
the syllogism.

[22] MacGregor, R. The Loom Web-site. Contains a list
of the numerous papers written on Loom.
http://www.isi.edu/isd/LOOM.

[23] Madsen, O. L., Møller-Pedersen, B., and
Nygaard, K. Object-oriented Programming in the
Beta Programming Language. Addison Wesley, 1993.

[24] Mylopoulos, J. Classes and instances. International
Journal of Intelligent and Cooperative Systems 1, 1
(April 1992).

[25] Mylopoulus, J., Borgida, A., Jarke, M., and
Koubarakis, M. Telos: Representing knowledge
about information systems. ACM Transactions on
Information Systems (1990). There are many other
papers on Telos in the literature.

[26] Orenstein, A. Existence and the Particular
Quantifier. Temple University Press, Philadelphia,
1978.

[27] Rose, L. E. Aristotle’s Syllogistic. Charles C. Thomas
Publisher, 1968. A study of Aristotle’s Prior Analytics
from the Greek text.

[28] Ross, W. D., Ed. The Works of Aristotle, Volume 1:
Logic. Oxford University Press, 1928.

[29] Ross, W. D. Aristotle’s Prior and Posterior
Analytics. Oxford University Press, 1957.

[30] Sakkinen, M. Disciplined inheritance. In ECOOP’89
(Nottingham, England, July 1989), S. Cook, Ed.,
Cambridge University Press, pp. 39 – 56.

[31] Sowa, J. F. Knowledge Representation: Logical,
Philosophical, and Computational Foundations.
Brooks/Cole Thomson Learning, 2000.

[32] Taivalsaari, A. On the notion of inheritance. ACM
Computing Surveys 28, 3 (September 1996), pp. 438 –
479.

[33] Vlissides, J. Pattern Hatching: Design Patterns
Applied. Addison Wesley, 1998.

[34] Wegner, P. The object-oriented classification
paradigm. In Research Directions In Object-Oriented
Programming, B. Shriver and P. Wegner, Eds. MIT
Press, Cambridge, Massachusetts, 1987, pp. 479 – 560.

[35] Wegner, P., and Zdonik, S. B. Inheritance as an
Incremental Modification Mechanism — or — What
Like Is and Isn’t Like. In Gjessing and Nygaard [16],
pp. 55 – 77.

[36] Winkler, J. F. H. Objectivism: ‘class’ considered
harmful. CACM 35, 8 (August 1992), pp. 128 – 130.
Technical correspondence.

